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ABSTRACT

Recent years have witnessed tremendous interest in understanding
and predicting information spread on social media platforms such
as Twitter, Facebook, etc. Existing diffusion prediction methods pri-
marily exploit the sequential order of influenced users by projecting
diffusion cascades onto their local social neighborhoods. However,
this fails to capture global social structures that do not explicitly
manifest in any of the cascades, resulting in poor performance for
inactive users with limited historical activities.

In this paper, we present a novel variational autoencoder frame-
work (Inf-VAE) to jointly embed homophily and influence through
proximity-preserving social and position-encoded temporal latent
variables. To model social homophily, Inf-VAE utilizes powerful
graph neural network architectures to learn social variables that
selectively exploit the social connections of users. Given a sequence
of seed user activations, Inf-VAE uses a novel expressive co-attentive
fusion network that jointly attends over their social and temporal
variables to predict the set of all influenced users. Our experimental
results on multiple real-world social network datasets, including
Digg, Weibo, and Stack-Exchanges demonstrate significant gains
(22% MAP@10) for Inf-VAE over state-of-the-art diffusion predic-
tion models; we achieve massive gains for users with sparse activi-
ties, and users who lack direct social neighbors in seed sets.
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1 INTRODUCTION

In social media, information disseminates or diffuses to a large num-
ber of users through posting or re-sharing behavior, resulting in
a cascade of user activations, e. g., a user Voting a news story on
Digg (a social news sharing website) triggers a series of votes from
multiple users, who may be his friends or other users interested in
the same story. Given a set of activated seed users, diffusion models
aim to predict the set of all influenced users. Diffusion modeling
has widespread social media applications, including viral market-
ing [24], recommendations [22, 23], and popularity prediction [51].

The diffusion prediction problem has received significant atten-
tion in the research community. Unlike pre-defined propagation
hypotheses [18], recent methods learn data-driven diffusion models
from collections of user activation sequences (diffusion cascades).
Existing diffusion models broadly fall into two categories.

Probabilistic generative cascade models use hand-crafted features
including roles [47], communities [4], topics [3], and structural pat-
terns [49]. Such methods rely on feature engineering that requires
manual effort and extensive domain knowledge, and are limited by
the modeling capacity of carefully chosen probability distributions.

Representation learning methods avoid feature extraction by
learning user embeddings characterizing their influencing abil-
ity and conformity [7, 9]. State-of-the-art methods project cas-
cades onto local social neighborhoods to generate Directed Acyclic
Graphs (DAGs), and propose extensions of Recurrent Neural Net-
works (RNNs). In particular, DAG-structured LSTMs [41] explicitly
operate on the induced DAG, while attention-based RNNs [17, 43,
44] implicitly consider cross-dependence for diffusion prediction.

Prior works only consider the sequence or projected social struc-
ture (induced DAG) of previously influenced users while ignoring
social structures that do not manifest in cascades. As a result, they
only capture the temporal correlation of diffusion behaviors among
users, which is also known as temporal influence or contagion [37].
Consider a Twitter user with interests in politics, who is likely to
follow famous political leaders and join interest groups that induce
transitive connections to other users; however, these connections
may not appear in cascades unless she re-tweets or posts content.
Social homophily [27] suggests that ties are more likely between
users with shared traits or interests, which can induce correlated
diffusion behaviors without direct causal influence. Since a vast
majority of social media users seldom post content and thus rarely
appear in cascades, it is critical to exploit their social neighborhood
structures to characterize social homophily accurately.

However, homophilous diffusion and contagion can result in sig-
nificantly different dynamics, e.g., contagions are self-reinforcing
and viral while homophily hinges on users’ preferences or traits.
Real-world cascades are often a complex combination of both as-
pects with user-specific variations. Indeed, it is well known that
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social homophily and temporal influence are fundamentally con-
founded in observational studies [37]. Thus, we propose a data-
driven framework to contextually model their joint effect when
predicting user-level diffusion behaviors. Therefore, our key ob-
jective is to develop a principled neural framework to unify social
homophily and temporal influence in diffusion prediction.

Our architecture Inf-VAE jointly models homophily through so-
cial embeddings preserving social network proximity and influence
through temporal embeddings encoding the relative sequential
order of user activations. Motivated by the recent successes of vari-
ational autoencoders (VAEs) [19] in characterizing sparse users via
Gaussian priors [26], and the expressive power of graph neural net-
works [14, 21], we adopt VAEs to model social homophily. We learn
structure-preserving social embeddings through a VAE framework
that supports a wide range of graph neural network architectures
as encoders and decoders. Given an initial set of seed user acti-
vations, Inf-VAE utilizes an expressive co-attentive fusion network
that captures complex non-linear correlations between social and
temporal embeddings, to model their joint effect on predicting the
set of all influenced users. We make the following contributions:

o Generalizable Variational Autoencoder Framework: Unlike
existing diffusion prediction methods that only consider local
induced propagation structures, Inf-VAE is a generalizable VAE
framework that models social homophily through graph neu-
ral network architectures of arbitrary complexity, to selectively
exploit the rich global network of social connections.

o Efficient Homophily and Influence Integration: To the best
of our knowledge, ours is the first work to comprehensively
exploit social homophily and temporal influence in diffusion pre-
diction. Given a sequence of seed user activations, Inf-VAE em-
ploys an expressive co-attentive fusion network to jointly attend
over their social and temporal embeddings to predict the set of
all influenced users. Inf-VAE with co-attentions is faster than
state-of-the-art recurrent methods by an order of magnitude.
Robust Experimental Results: Our experiments on multiple
real-world social networks, including Digg, Weibo, and Stack-
Exchanges, demonstrate significant gains for Inf-VAE over state-
of-the-art models. Modeling social homophily through VAEs
enables massive gains for users with sparse activities, and users
who lack direct social neighbors in seed sets. An ablation analysis
of various modeling choices further highlights the synergistic
effects of jointly modeling homophily and temporal influence.

2 RELATED WORK

We discuss existing work on diffusion modeling followed by related
work on network representation learning and co-attentions.
Information diffusion overview. Historically, information dif-
fusion has been studied through two seminal models: Independent
Cascade (IC) [18] and Linear Threshold (LT) [11]. Three distinct
applications emerged, namely: network inference [10], which in-
fers the underlying social network that best explains the observed
cascades; cascade prediction [25], which predicts macroscopic prop-
erties of cascades, including size, growth, and shape; and diffusion
prediction [41], which learns a model from social links and cascade
sequences, to predict the set of influenced users given a seed set of
activated users. In this paper, we focus on diffusion prediction.
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Diffusion prediction. The earliest data-driven methods pro-
pose several extensions of IC and LT incorporating topics [3], con-
tinuous timestamps [31], user profiles [32], and community struc-
ture [4]. A few techniques explore probabilistic generative models
via latent topics and communities [16, 50]. Most recent studies focus
on learning representations to overcome feature engineering or pre-
defined hypotheses in diffusion modeling [6, 7, 9, 30, 41-44]. Emb-
IC [7], Inf2vec [9] embed user influencing capability and suscepti-
bility in diffusion. Topo-LSTM [41], CYAN-RNN [43], SNIDSA [44],
and DeepDiffuse [17] project the diffusion cascades on local social
neighborhoods and model the resulting DAG propagation struc-
tures with RNNs. These techniques outperform classical approaches
by significant margins in diffusion prediction. Our key observation
is that these projected DAGs could ignore social structures that
do not appear in any observed cascade. In contrast, our model Inf-
VAE can account for unobserved social connections in the user
activation process by modeling social homophily through VAEs.

A related problem is social influence prediction, which aims to
classify social media users based on the activation status of their
ego-network [30, 48]. Direct extensions to predict the set of all in-
fluenced users (diffusion prediction) entails reapplying their models
on each candidate inactive user in the social network, resulting in
prohibitive inference costs, hence preventing a comparison.

Network representation learning: This line of work captures
varied notions of structural node proximity [12, 33] in networks
via low-dimensional vectors. Notably, graph neural networks have
achieved great success in node classification and link prediction [13,
21, 28, 34-36, 39]. Graph Autoencoders [20, 40] employ various en-
coding and decoding architectures to embed network structure and
learn unsupervised node embeddings. Hamilton et al. [14] unify
a large family of network embedding methods in an autoencoder
framework. However, general-purpose embeddings modeling struc-
tural proximity are not directly suited to diffusion modeling.

Co-attentional models: Our work also leverages recent ad-
vances in neural attention mechanisms, especially in Natural Lan-
guage Processing [2]. Specifically, co-attention has achieved great
success in modeling relationships between pairs of sequences, e.g.,
question-answer [45], etc. Co-attentional methods compute inter-
action weights between data modalities, learning fine-grained non-
linear correlations. In our work, we develop a co-attentive fusion
network to capture the contextual interplay of users’ social and
temporal representations for diffusion prediction.

3 PROBLEM DEFINITION

We study diffusion prediction where the goal is to predict the set of
all influenced users, given temporally ordered seed user activations.

Definition 3.1. Social Network: The social network is repre-
sented as a graph G = (V, &) where V = {vi}f\il is the set of N
Nt
matrix of G by A € RN*N where Ajj=1ife; j € & otherwise 0.

Definition 3.2. Diffusion cascade: A diffusion cascade D; is an
ordered sequence of user activations in ascending order of time
denoted by: D; = {(vi, tg) | viy € V,t, € [0,00), k =1...K},
each v, is a distinct user in “V (no repeats) and ;. is non-decreasing,

users and & = {e;;} is the set of links. We denote the adjacency

i.e., ty < tpy1. The k" user activation is recorded as tuple (Vig, tg),
referring the activated user and activation time.
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We represent cascades by delay-agnostic relative activation or-
ders similar to [7, 9, 41], i.e, a cascade is equivalently written as
D = {(vi, k) | vi, € (V}kK:l. We do not assume the availability of
explicit re-share links between users in cascades; this corresponds
to the simplest yet most general setting of diffusion [9, 41]. Though
timestamps may be easily used as input features, we leave genera-
tion of continuous timestamps as future work.

Definition 3.3. Diffusion prediction: Given a social network G
and a collection of cascade sequences D = {D;,1 < i < |D|}, learn
diffusion model M to predict the future set of influenced users in a
cascade with the seed activation sequence I = {(v;;, 1), ..., (v, k)}
of k seed users. Diffusion prediction estimates the probability of
influencing each inactive user: Pg(v | I) Yo € V — I, inducing a
ranking of activation likelihoods over the set of inactive users.

We create a training set T of diffusion episodes containing (seed
activations, activated users) tuples from the cascade collection D,
by randomly splitting each cascade D € D of length K at each time
step 2 < k < K — 1. Specifically, a split at time step k > 2, creates a
training episode (I, Cx) where I = {(vj;,j);1 < j < k} is the seed
set consisting of the cascade sliced at k and Cy = {vi,,,, ..., Vig}
is the set of influenced users after time step k. Thus, we denote the
training set by T = {(I;,C;) 1 < i < |T|}.

4 INFLUENCE VARIATIONAL
AUTOENCODER

In this section, we describe our proposed Influence Variational
Autoencoder (Inf-VAE) for predicting information diffusion.

4.1 Model Description

We describe the latent variables modeling social homophily and
temporal influence, followed by our generative network Inf-VAE.

4.1.1 Social Homophily. Our objective is to define latent social
variables for users that capture social homophily. The homophily
principle stipulates that users with similar interests are more likely
to be connected. In the absence of explicit user attributes, we posit
that highly interconnected users in social communities share ho-
mophilous relationships. We model social homophily through la-
tent social variables designed to encourage users with shared social
neighborhoods to have similar latent representations.

Specifically, we assign a latent social variable z; for user v;, where
the prior for z; is chosen to be a unit normal distribution, in line with
standard assumptions in VAEs. Normal distributions are chosen
in VAE frameworks due to their flexibility to support arbitrary
functional parameterizations by isolating sampling stochasticity
to facilitate back-propagation [19]. We assume the latent social
variables Z to collectively generate the social network G, through a
graph generation neural network fpec(Z) parameterized by 6. The
corresponding generative process is given by:

zi ~N(,Ip) G ~po(G | Z) = po(G | forc(Z)) 1)

where Ip € RPXP is an identity matrix of D dimensions. Here, the
graph generation neural network fprc(Z) can be instantiated to
preserve an arbitrary notion of structural proximity in the social
network G (Sec 4.3). In the above equation, we abuse the notation
of G to denote an appropriate representational form of the social
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Symbol ‘ Description

VA Social variables modeling network proximity, for all users V
Vs Sender variables for all users V

Vr Receiver variables for all users V

Vr Temporal influence variables for all users V

Vp User-specific popularity variables for all users V

Px Position-encoded temporal embeddings for all time steps K

Table 1: Notations

network structure, which can take multiple forms, including the
adjacency matrix, random walks sampled from G, etc.

While homophily characterizes peer-to-peer interest similarity,
its impact on user behaviors tends to asymmetric since users who
share interests may drastically differ in their posting rates, e.g., cer-
tain users are naturally predisposed to be socially active and hence
more influential in comparison to others. Thus, it is necessary to dif-
ferentiate user roles when modeling the effect of social homophily
on diffusion behaviors. Similar concepts have been examined in
social influence literature to characterize users by their influencing
capability and conformity [7-9, 41, 42].

We associate each user v; € V with a sender Vf € RP and
receiver v € RP latent variable. Our key innovation lies in condi-
tioning the information sending and receiving capabilities of users
on their homophilous traits. We use normal distributions centered
at z; to define the sender and receiver variables for user v; as:

Vi~ N(zi, A5 p) v~ N(zi, A7 D) ()

where Ag, A, are hyper-parameters controlling the degree of varia-
tion or uncertainty for v; and v} wr.t. z;. Let Vs and Vg denote the
set of all sender and receiver variables respectively for all users.

4.1.2 Temporal Influence. Now, we define latent temporal influ-
ence variables to describe the varying influence effects of seed users
depending on the relative sequential order of activations. There
are two interesting factors at play: activation orders and popularity
effects. A majority of social media users adopt more recent infor-
mation while often ignoring old and obsolete content [46]. On the
other hand, social status impacts the influencing power of seed users
independent of their activation order and social neighbors, e.g., fa-
mous media figures naturally exert significant influence. Thus, we
consider both the relative sequential order of user activations and
popularity effects of seed users to model temporal influence.

To quantify the temporal influence exerted by a seed user activa-
tion (vj, , k) of user v;, at time step k (1 < k < K), we first encode
the relative position k through positional-encodings [38] to obtain
temporal embeddings py. Since we expect the variation in popu-
larity effects to be quite small, we draw user-specific popularity
variables from a zero-mean normal distribution to serve as offsets
to the temporal embeddings. Specifically, the temporal influence
variable for activation (v;, , k) denoted by vfk, is given by:

vh ~N(0,2;'Ip)  px = PE(k) Vi +pe 3
PE(k)q = sin(k/10000%4/P) PE(k)yq.1 = cos(k/10000%4/P)

t _
Vi =

where A, is a hyper-parameter to control the popularity effects, and
1 < d < D/2 denotes the dimension in the temporal embedding
pr- Note that the popularity variable ka is user-specific, while
temporal embedding py only depends on the activation step k. The
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Figure 1: Neural Architecture of Inf-VAE depicting latent variable interactions. The left side indicates the VAE framework to
model social homophily; right side denotes the co-attentive fusion network to integrate the social and temporal variables.

set of all latent user popularity variables are denoted by Vp, while
Px represents the set of position-encoded temporal embeddings.

4.1.3 Co-attentive Diffusion Episode Generation. Let us con-

sider a single diffusion episode (I, C) € T, with seed activations I =

{(vi}, 1), ..., (viy, k)} and influenced users C = {vj,,,,...,vVig}. A

diffusion model aims to predict the set of influenced users C given

seed activations I. Since diffusion is always conditioned on I, we

propose a conditional generative process to sample C given I.

Let us denote the set of seed users by Iy = {v;,...,v;; }. Our
objective is to jointly model the effects of social homophily and
temporal influence exerted by seed users Iy, which can be summa-
rized by: sender sequence (vfl, vfz, e, va); and temporal influence
sequence (Vfl, vfz,
the sender and temporal influence sequences, we propose an expres-
sive co-attentive fusion strategy to learn attention scores for each
seed user by modeling interactions between the two sequences. We
describe the conditional generative process in two steps:

o The social homophily and temporal influence aspects of seed
users, are integrated into an aggregate seed set representation hy.
The co-attentive fusion network Gpr(-) performs homophily-
guided temporal attention, i.e., attends over the temporal influ-
ence variables by computing co-attentional weights that jointly
depend on both homophily and temporal influence characteris-
tics. As illustrated in Figure 1, the sender and temporal influence
variables of seed users feed into a fusion network GDIFF(ka, ka ).

. VfK ). To model complex correlations between

The aggregate seed representation hy is computed as:

eXp(GDIFF(VIS- ’VE (k)) K

= — — hr=) avi() @
z exp(GDIFF(V?.avf.U))) J=1
j=1 J J

Each «; is the normalized co-attentional coefficient for seed user

vj, denoting its contribution in computing the aggregate repre-

sentation hy. To model the co-dependence between v}, Vf , we de-
fine the co-attentive function GDIFF(ka, vfk) = tanh(vfk Tvak)
as a bi-linear product parameterized by W € RP*P.

o The probability of influencing an inactive user v; depends on the
sending capacity of seed users (embedded in hy) and her receiving
capability (encoded by receiver variable v]'. ). We quantify the

likelihood of influencing v; by hITV; . For each inactive user v; €
V —Iy, we draw a binary variable C; € {0, 1} indicating whether
user v; is influenced by set users Iy or not, given by:

Cj ~ Ber(a(hITvJ’-)) Yoj €V —{vij,...,0ig} (5)

where o(-) is the sigmoid function and Ber(-) is the Bernoulli dis-
tribution. The corresponding logistic log-likelihood of generating
a single diffusion episode (I, C) is given by:

LY'E =1ogpe(C | L Vs, Vk, Vp) (6)

= 3 nlogleIvD)+ > log(1 - o(hIv}))
veC v, €V-C-Iy
Here, n re-weights positive examples since the actual number of
influenced users is much smaller than the total number of users.

4.2 Model Likelihood

Due to the intractability of analytically computing the latent poste-
rior distribution p(Vs, Vg, Vp, Z|G, T), we use variational inference
to factorize the posterior with a mean-field approximation:

q(Vs, VR, Vp, Z|G) = q(Vs)q(Vr)q(Vp)q(Z|G) )

The variational distributions of variables Vg, Vg, and Vp follow
normal distributions while the social variables Z are conditioned on
G through a structure-encoding inference network [19]. Specifically,
the variational distribution of Z denoted by q4(Z|G), is a diagonal
normal distribution parameterized by frxc(G) defined as:

finc(©) = [1(6). log 2(6)] 44(ZIG) = N (14(6). diag(a2(6)))

The inference network outputs the parameters, y14(G), 04(G) of
the variational distribution q4(Z|G), which is designed to approxi-
mate the corresponding posterior p(Z|G). The inference network
fenc(G) endows the model with added flexibility to incorporate
arbitrary neighborhood aggregation functions such as graph convo-
lutions [21], attentions [39], etc. The variational structure distribu-
tion q4(Z|G) and the structure generative model pg(G|Z) (Eqn. 1)
together constitutes a variational graph autoencoder [20].

4.3 Neural Graph Autoencoder Details

In this section, we describe functions finc(G) and fpec(Z) which
describe the graph structure inference and generative networks
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of Inf-VAE. The encoder summarizes local social neighborhoods
into latent vectors, which are subsequently transformed by the de-
coder into high-dimensional structural information (e.g., adjacency
matrix). Hamilton et al. [14] present an encoder-decoder framework
to conceptually unify a large family of graph embedding methods.
Encoder architectures fall into three major categories: embedding
lookups [12, 29], neighborhood vector encoding [40], and neighbor-
hood aggregation [13], while decoders comprise unary and pairwise
variants. In Inf-VAE, we explore two representative choices:

e MLP + MLP: We use a Multi-Layer Perceptron (MLP) to both
encode and decode the laplacian matrix of G, given by L =
D™ Y/2AD~1/2 The neighborhood vector for user v;, denoted by
aj, is the ith row of L = [ag,.. .,aN]T. The encoder is an MLP
network finc(a;) which encodes a; into z;, while the decoder
foec(zi) strives to reconstruct a; from z;. We introduce a re-

weighting vector b; = {b;; jl\il where b;; = 1if L;; = 0 and

bij = f > 1 when L;; > 0. f is a confidence parameter that re-

weights the positive terms (L;; > 0) to balance the unobserved 0’s

which far outnumber the observed links in real-world networks.

The generative process to obtain a; from z; is given by:

a; ~ pg(ailzi) = N(forc(zi), diag(b;))

where diag(b;) is a diagonal matrix with non-zero entries from
vector b;. The corresponding Gaussian log-likelihood is given by:

N N
logpo(AlZ) = ) logpe(ailzi) = Y [[bi © (ai = forc(z)|
i=1 i=1

e GCN + Inner Product: We use a Graph Convolutional Network
(GCN) as the encoder and an inner product decoder that maps
pairs of user embeddings to a binary indicator of link existence
in G. The GCN network comprises multiple stacked graph con-
volutional layers to extract features from higher-order structural
neighborhoods. The input to a layer is a user feature (or embed-
ding) matrix X € RN*F and a normalized adjacency matrix A,
where each GCN layer computes the function:

finc(A) = 6(AXW) A= D 2AD7 12 4 Iy

where X is an identity matrix encoding user identities. Each entry
Ajj of adjacency matrix A is generated according to:

Ajj ~ po(Aijlzi, zj) = Ber(a(zlrzj))

Similar to above, we re-weight the positive entries of A with a
confidence parameter f3. The logistic log-likelihood is given by:

logpg(AlZ) = ) Plog(o(z]2)) + ), log(1=o(z]z)
(i,j)e& (i,7)¢&

As an alternative to re-weighting positive entries, negative sam-
pling [29] can scale this objective to large-scale networks.

4.4 Model Inference

The overall objective maximizes a lower bound on the marginal log
likelihood, also named evidence lower bound (ELBO) [5], given by:

Lq = Eqllogp(G. T, Vs, Vg, Vp, Z) — log q(Vs, Vr. VP, Z|G)]  (8)

Note that Lq is a function of both generative (6) and variational
(¢) parameters. However, an analytical computation of the expec-
tation with respect to q4(Z|G) is intractable, while Monte Carlo

514

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Algorithm 1 Inf-VAE training with block coordinate ascent.

Input: Social Network (&), Training episodes (T)
Output: MAP estimates of Vg, Vg, Vp and parameters 0, ¢.
1: Initialize latent variables from a standard normal distribution.
2. Pre-training: Train forc(G|Z) and finc(Z|G) on G using a
VAE with log-likelihood:

LYAE =B, 216 log po(G1Z) — Dk1.(94(Z1G). p(Z))

3: while not converged do
> Optimize over social network G
4 for each batch of users U € V do
5: Fix Vs, VR, Vp, Gppr(-) and update weights of finc(G)

and fpec(Z) using mini-batch gradient ascent (Eqn. 9)
> Optimize over diffusion episodes T

6: for each batch of diffusion episodes B C T do
Fix Z, finc(G), forc(Z) and update Vs, Vg, Vp, and

Gprrr(.) using mini-batch gradient ascent. (Eqn. 9)

=

sampling prevents gradient back-propagation to the neural param-
eters of fpnc(G). With the reparametrization trick [19], we instead
sample € ~ N(0, INxp) and form samples of Z = 114(G)+€004(G).
This isolates the stochasticity during sampling and the gradient
with respect to ¢ can be back-propagated through the sampled Z.

4.4.1 Optimization. Since bayesian methods to infer latent pos-
teriors incur high computational costs, and considering our goal
of making good predictions rather than explanations, we resort
to MAP (Maximum A Posteriori) estimation. Thus, we sample Z
from q4(Z|G) using point estimates for Vs, Vg and Vp. We maxi-
mize the joint log-likelihood with MAP estimates of latent variables
Vs, VR, Vp, inference and generative network parameters 6, ¢, and
observations T and G, given hyper-parameters As, A, 4p:

LMAP _ By, [log pg(G12)] - Dki(qg.p(2)) + Z Ly

(I,C)eT
N

i=1

©)

A 2, A 2, M 2
(g vE =2+ 2, =2l + 20

where g is a shorthand for q4(Z|G), and Ey (7 /6)[Z] is equal
to y15(G) output by the inference network. To optimize this objec-
tive, we employ block coordinate ascent with two sets of variables,
{fenc(G), forc(Z)} and {Vs, VR, Vp, Gprer }. As illustrated in Alg 1,
each iteration of the algorithm proceeds in two steps, by alternating
optimization over the social network and diffusion cascades.

4.4.2 Diffusion Prediction. After learning the (locally) optimal
model parameters and MAP estimates of latent variables, the like-
lihood of influencing user v; given seed activations I is given by:

p(jID) = o(h] V) (10)

4.4.3 Complexity. The cost per iteration comprises two parts: (a)
optimizing over social network G gives O(|&|-F2 +|&|- D) assuming
GCN + Inner Product (b) optimizing over diffusion episodes is
O(|T|-D- N) where F is the maximum layer dimension in fgyc. The
overall complexity per iteration is O(|&| - F2 + |&| - D+ |T|- D - N).
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Social Networks Stack-Exchange Networks
Dataset Digg Weibo Android Christianity Travel
# Users 8,602 5,000 9,958 2,897 8,726
# Links 173,489 123,691 48,573 35,624 76,555
# Cascades 968 23,475 679 589 711
Avg. cascadelen  100.0 23.6 33.3 229 26.8

Table 2: Statistics of datasets used in our experiments

5 EXPERIMENTS

In this section, we present our experimental results on multiple
datasets from real-world social networks and public Stack-Exchanges!.
We examine two popular social networks Digg and Weibo.

e Digg [15]: A social platform where users vote on news stories.
The sequence of votes on each story constitutes a diffusion cas-
cade, while the social network comprises friendship links among
voters. We retain only users who have voted on at least 40 stories.

e Weibo [48]: A Chinese micro-blogging platform, where the so-
cial network consists of follower links, and cascades reflect re-
tweeting behavior. We choose the 5000 most popular users.

Stack-Exchanges: Community Q&A websites where users post
questions and answers on a wide range of topics. The inter-user
knowledge-exchanges on various interaction channels (e.g., ques-
tion, answer, comment, upvote, etc.), constitute the social network.
Cascades correspond to chronologically ordered series of posts as-
sociated with the same tag, e.g., “google-pixel-2" on Android. We
choose three Stack-Exchanges, Android, Christianity and Travel,
spanning diverse themes. Dataset statistics are provided in Table 2.

5.1 Baselines

We compare Inf-VAE against state-of-the-art representation learn-
ing methods for diffusion prediction since they have been shown to
significantly outperform classical models (e.g., IC and LT) [9, 41].

e CDK [6]: an embedding method that models information spread
as a heat diffusion process in the representation space of users.

o Emb-IC [7]: an embedded cascade model that generalizes IC to
learn user representations from partial orders of user activations.

e Inf2vec [9]: an influence embedding method that combines local
propagation structure and user co-occurrence in cascades.

o DeepDiffuse [17]: an attention-based RNN that operates on just
the sequence of previously influenced users, to predict diffusion.

o CYAN-RNN [43]: a sequence-based RNN that uses an attention
mechanism to capture cross-dependence among seed users.

o SNIDSA [44]: an RNN-based model to compute structure atten-
tion over the local propagation structure of a cascade.

e Topo-LSTM [41]: a recurrent model that exploits the local prop-
agation structure of a cascade through a dynamic DAG-LSTM.

5.2 Experimental Setup

We denote our two model variants with GCN and MLP architectures,
by Inf-VAE+GCN and Inf-VAE+MLP respectively. We randomly
sample 70% of the cascades for training, 10% for validation and
remaining 20% for testing. We consider the task of predicting the
set of all influenced users as a retrieval problem [7, 9, 41, 43]. The

!https://archive.org/details/stackexchange
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fraction of users sampled from each test cascade to serve as the seed
set is defined as seed set percentage, which is varied from 10% to
50% to create a large evaluation test-bed spanning diverse cascade
lengths. The likelihood of influencing an inactive user determines
its rank (Eqn. 10). We use MAP@K (Mean Average Precision) and
Recall@K as evaluation metrics. Note that MAP@K considers both
the existence and position of ground-truth target users in the rank
list, while Recall@K only reports occurrence within top-K ranks.

Hyper-parameters are tuned by evaluating MAP@10 on the val-
idation set. Since Emb-IC generalizes IC, we use 1000 Monte Carlo
simulations to estimate influence probabilities. Since the recurrent
neural models (e.g., Topo-LSTM) are trained for next user predic-
tion, we use the ranking induced by user activation probabilities for
diffusion prediction, which we found to significantly outperform
a similar simulation approach. For Inf2vec, we examine several
seed influence aggregation functions (Ave, Sum, Max, and Latest)
to report the best results. Our reported results are averaged over
10 independent runs with different random weight initializations.
Our implementation of Inf-VAE is publicly available?.

5.3 Experimental Results

We note the following key observations from our experimental
results comparing Inf-VAE against competing baselines (Table 3).

Methods that do not explicitly model sequential activation orders
(e.g., CDK and Emb-IC), perform markedly worse than their coun-
terparts. Modeling local projected cascade structures with neural
recurrent models results in improvements (e.g., Topo-LSTM and
others). Jointly modeling social homophily derived from global net-
work structure and temporal influence by our model Inf-VAE yields
significant relative gains of 22% (MAP@10) on average across all
datasets. Inf-VAE+GCN consistently beats the MLP variant, vali-
dating the power of graph convolutional networks in effectively
propagating higher-order local neighborhood features.

Figure 2 depicts the variation in recall with size of rank list K. As
expected, recall increases with K, however, the relative differences
across methods is much smaller. Inf-VAE consistently outperforms
baselines across a wide range of K values. For instance, the Chris-
tianity dataset has seed sets with 2-10 users, and corresponding tar-
get sets with 10-15 users out of a possible 3000. Here, a recall@100
of 0.45 for Inf-VAE is quite impressive, especially considering the
absence of explicit re-share links and the noise associated with
real-world diffusion processes. We restrict our remaining analyses
to Inf-VAE+GCN since it consistently beats the MLP variant.

5.4 Impact of Social and Behavior Sparsity

In this section, we analyze the benefits of explicitly modeling social
homophily through VAEs, in comparison to the best baseline (Topo-
LSTM) that only considers local propagation structures.

e Users with sparse diffusion activities. We divide users into
quartiles by their activity levels, which is the number of partici-
pating cascades per user. We evaluate target recall@100 for each
user u, defined as the fraction of times u was predicted correctly
within top-100 ranks. In Figure 3(a), we depict both recall scores
and relative gains (over Topo-LSTM) across activity quartiles.

Zhttps://github.com/aravindsankar28/Inf-VAE


https://archive.org/details/stackexchange
https://github.com/aravindsankar28/Inf-VAE

Technical Presentation

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Method Digg Weibo Android Christianity Travel

MAP @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100
CDK 0.0437  0.0222 0.0228 0.0130 0.0106 0.0123 0.0319 0.0121 0.0125 0.0876 0.0531 0.0578 0.0650 0.0333  0.0341
Emb-IC 0.0862 0.0431 0.0431 0.0140 0.0116 0.0131  0.0505 0.0248 0.0267 0.1340  0.0905 0.0962 0.0924 0.0584 0.0609
Inf2vec 0.1189  0.0554 0.0546 0.0156 0.0103 0.0121 0.0412 0.0141 0.0150 0.1824 0.0790 0.0852 0.1245 0.0495 0.0529
DeepDiffuse 0.0919  0.0460 0.0471 0.0291 0.0186 0.0213  0.0437 0.0228 0.0250 0.1632  0.0828 0.0831 0.1220 0.0675 0.0693
CYAN-RNN 0.1188 0.0479  0.0427 0.0296 0.0207 0.0234 0.0520 0.0276 0.0296 0.1971 0.1229 0.1304 0.1551 0.0791  0.0799
SNIDSA 0.0941 0.0363 0.0348 0.0224 0.0146 0.0169 0.0397 0.0207 0.0222  0.1233  0.0699 0.0781 0.0857 0.0562  0.0585
Topo-LSTM 0.1193  0.0577 0.0587 0.0325 0.0226 0.0247 0.0595 0.0283 0.0289 0.1811 0.0989 0.0991 0.1393 0.0773  0.0783
Inf-VAE+MLP 0.1587 0.0774 0.0719 0.0322 0.0211 0.0234 0.0584 0.0272 0.0285 0.2549 0.1355 0.1402 0.1865 0.0897 0.0913
Inf-VAE+GCN 0.1642 0.0779 0.0724 0.0373 0.0230 0.0257 0.0601 0.0290 0.0304 0.2594 0.1413 0.1461 0.1924 0.0906 0.0910

Table 3: Experimental results for diffusion prediction on 5 datasets (MAP@K scores for K = 10, 50 and 100), the seed set percentage
varies in the range to 10 to 50% users in each test cascade. 22% relative gains in MAP@ 10 (on average) over the best baseline.
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Figure 2: Experimental results for diffusion prediction on 5 datasets, Recall@K scores on varying size of the rank list K
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Figure 3: Performance across user quartiles on diffusion ac-
tivity level, and seed neighbor fraction (Q1: lowest, Q4: high-
est). Inf-VAE has higher gains for users with sparse activities
and lacking direct neighbors in seed sets (quartiles Q1-Q3).

While target recall increases with activity levels, Inf-VAE signifi-
cantly improves performance for inactive users (quartiles Q1-Q3).
Thus, modeling social homophily through VAEs contributes to
massive gains for users with sparse diffusion activities. Interest-
ingly, Topo-LSTM performs comparably on the most active users
(quartile Q4), which indicates the potential of purely local se-
quential modeling techniques for highly active users.

e Users that lack direct social neighbors in seed sets. We sep-
arate users into quartiles by seed neighbor fraction, which is com-
puted as the fraction of seed users that are direct social neighbors,
averaged over the training examples. We similarly report target
recall@K and relative gains across quartiles (Figure 3(b)).

As expected, performance increases with seed neighbor fraction.
Note higher relative gains over Topo-LSTM for users that lack
direct neighbors in the seed set (quartiles Q1-Q3). This demon-
strates the ability of Inf-VAE to implicitly regularize seed user
representations based on higher-order social neighborhoods cap-
tured by GCN-based autoencoders. Again, we find that local
sequential models suffice for users with large seed neighbor frac-
tions, as evidenced by the results of Topo-LSTM in quartile Q4.
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Metric Weibo Android

MAP @10 @50 @100 @10 @50 @100
(0) Default 0.0373 0.0230 0.0257 0.0601 0.0290 0.0304
)Vs=Vr AL Z 0.0353 0.0220 0.0248 0.0558 0.0275 0.0287
2)Vs L Z 0.0351 0.0213 0.0240 0.0595 0.0285 0.0301
B)VWr L Z 0.0326 0.0217 0.0241 0.0567 0.0276 0.0291
Vs LZ,Vp L Z 0.0313 0.0205 0.0235 0.0542 0.0274 0.0289
(5) Remove Coattention  0.0307 0.0207 0.0233 0.0553 0.0270 0.0284
(6) Separate Attentions  0.0293 0.0217 0.0192 0.0570 0.0277 0.0291
(7) Static-Pretrain 0.0342 0.0203 0.0226 0.0606 0.0281 0.0292

Table 4: Ablation study on architecture design (MAP@K
scores for K = 10, 50, 100), L. denotes variable independence

5.5 Ablation Study and Sensitivity Analysis

In this section, we first present an ablation study followed by a
sensitivity analysis on seed set percentage and hyper-parameters.

5.5.1 Ablation Study. We analyze model design choices includ-

ing homophily via VAEs and co-attention, in Android and Weibo.

Social Homophily: We examine ways to condition Vg, Vg on Z:

(1) Vs and Vg are identical and are conditioned on Z through hyper-
parameter A¢(= A,), i.e, Vs = VR L Z (note that this is different
from setting As = A, without enforcing Vs = VR).

(2) Vg isafree variable conditionally independent of Z, i.e, Vs 1L Z,
which is equivalent to setting A = 0.

(3) Vg is a free variable, i.e., Vg L Z, which is the inverse of (3).

(4) Vs and Vy are both free variables conditionally independent of
Z(As=Ar=0),ie,Vs LZ Vg LZ.

Independent conditioning of Vs and Vg on Z (default) achieves

best results. Enforcing Vs = Vg (row 1) is clearly inferior, which

validates the choice of differentiating user roles. Notably, allowing

Vs to be a free variable results in minor performance degradation
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Figure 4: Impact of seed set percentage in Weibo. Inf-
VAE achieves higher gains for larger seed set fractions.

(row 2), while the drop is significant when Vp is independent of Z
(row 3). As expected, setting both Vs and Vg as free variables (row
4), performs the worst due to lack of social homophily signals.
Co-attention: We conduct two ablation studies defined by:
(5) Replace co-attention with meanpool over concatenated sender
and temporal influence vectors, followed by a dense layer.
(6) Replace co-attention with two separate attentions on the sender
and temporal influence sequences, followed by concatenation.
Learning co-attentional weights (default) consistently outperforms
mean pooling (5), illustrating the benefits of assigning variable con-
tributions to seed users. Using separate attentions (6) significantly
deteriorates results, which indicates the existence of complex non-
linear correlations between the social and temporal latent factors.

Joint Training: In (2), we replace joint block-coordinate optimiza-
tion (Alg 1) with a single step over cascades with pre-trained user
embeddings (line 2), i.e., Z is not updated based on cascades.

Joint training is beneficial when social interactions are noisy (e.g.,
Weibo) in comparison to focused stack-exchanges such as Android.

5.5.2 Impact of Seed Set Percentage. We divide the test set
into quartiles based on seed set percentage, and report performance
per quartile. Since we require a sizable number of test examples per
quartile to obtain unbiased estimates, we use the Weibo dataset.

Figure 4 depicts Recall@10 scores in different ranges. First, re-
call scores increase with seed set percentage since larger seed sets
enable better model predictions; and target set size reduces with in-
crease in seed set percentage. Second, relative gains of Inf-VAE over
baselines increase with seed set percentage. This highlights the
capability of co-attention in focusing on relevant users based on
both social homophily and temporal influence factors.

5.5.3 Impact of A5 and A,. Hyper-parameters As and A, control
the degree of dependence of the sender and receiver variables Vg, Vg
on the social variables Z. Figure 5 depicts performance (MAP@10)
on Android and Weibo datasets. The performance is sensitive to
variations in A, with best values around 0.01 and 0.1, while A re-
sults in minimal variations. Furthermore, the best values of Ag, A,
are stable in a broad range of values that transfer across datasets, in-
dicating that Inf-VAE requires minimal tuning in practice. Since 1,
has minimal performance impact, we exclude it from our analysis.

5.5.4 Runtime Analysis. In our experiments, all methods con-
verge within 50 epochs with similar convergence rates. For the sake
of brevity, we only compare runtime per epoch, which includes one
step over the social network and cascades for Inf-VAE.
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Figure 5: MAP@10 on varying A, A, over Android and Weibo.
Performance is more sensitive to variations in A, than A.
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Figure 6: Running time and scalability comparison of Inf-
VAE with several baselines. Inf-VAE is faster than recurrent
models (Topo-LSTM, CYANRNN) by an order of magnitude.

From figure 6(a), Inf2vec is the fastest while Inf-VAE comes sec-
ond. Thus, Inf-VAE achieves a good trade-off between expensive
recurrent models (e.g., Topo-LSTM) and simpler embedding meth-
ods (e.g., Inf2vec), with consistently superior results.

5.5.5 Scalability Analysis. We analyze scalability on cascade
sequences of varying lengths. Since real-world datasets possess
heavily biased length distributions, we instead synthetically gen-
erate a Barabasi-Albert [1] network of 2000 users and simulate
diffusion cascades using an IC model. We compare training times
per epoch for each cascade length (I) in the range of 10 to 50.
Figure 6(b) depicts linear scaling for Inf-VAE and Inf2vec wrt
cascade length. Recurrent methods scale poorly due to the sequen-
tial nature of back-propagation through time (BPTT), resulting in
prohibitive costs for long cascade sequences. On the other hand, Inf-
VAE avoids BPTT through efficient parallelizable co-attentions.

6 CONCLUSION

In this paper, we present a novel variational autoencoder framework
(Inf-VAE) to jointly embed homophily and influence in diffusion pre-
diction. Given a sequence of seed user activations, Inf-VAE employs
an expressive co-attentive fusion mechanism to jointly attend over
their social and temporal variables, capturing complex correlations.
Our experimental results on two social networks and three stack-
exchanges indicate significant gains over state-of-the-art methods.
In future, Inf-VAE can be extended to include multi-faceted user
attributes owing to the generalizable nature of our VAE framework.
While the current implementation employs GCN networks, we fore-
see direct extensions with neighborhood sampling [13] to enable
scalability to social networks with millions of users. We also plan
to explore neural point processes to predict user activation times.
Finally, similar frameworks may be examined for joint temporal
co-evolution of social network and diffusion cascades.
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