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ABSTRACT
In recent times, deep neural networks have found success in Collabo-
rative Filtering (CF) based recommendation tasks. By parametrizing
latent factor interactions of users and items with neural architec-
tures, they achieve significant gains in scalability and performance
over matrix factorization. However, the long-tail phenomenon in
recommender performance persists on the massive inventories of
online media or retail platforms. Given the diversity of neural archi-
tectures and applications, there is a need to develop a generalizable
and principled strategy to enhance long-tail item coverage.

In this paper, we propose a novel adversarial training strategy
to enhance long-tail recommendations for users with Neural CF
(NCF) models. The adversary network learns the implicit associa-
tion structure of entities in the feedback data while the NCF model
is simultaneously trained to reproduce these associations and avoid
the adversarial penalty, resulting in enhanced long-tail performance.
Experimental results show that even without auxiliary data, ad-
versarial training can boost long-tail recall of state-of-the-art NCF
models by up to 25%, without trading-off overall performance. We
evaluate our approach on two diverse platforms, content tag rec-
ommendation in Q&A forums and movie recommendation.
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Figure 1: CDAE[15] and VAE-CF[9] recall for item-groups
(decreasing frequency) in MovieLens (ml-20m). CDAE over-
fits to popular item-groups, falls very rapidly. VAE-CF has
better long-tail recall due to representational stochasticity.
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1 INTRODUCTION
Recommender systems play a pivotal role in sustaining massive

product inventories on online media and retail platforms, and re-
duce information overload on users. Collaborative filtering methods
personalize item recommendations based on historic interaction
data (implicit feedback setting), with matrix-factorization being the
most popular approach [5]. In recent times, NCF methods [3, 9, 15]
have transformed simplistic inner-product representations with
non-linear interactions, parametrized by deep neural networks.
Although performance gains over conventional approaches are sig-
nificant, a closer analysis indicates skew towards popular items
(Figure 3) with ample evidence in the feedback (overfit to popular
items), resulting in poor niche (long-tail) item recommendations to
users (see fig. 1). This stifles user experience and reduces platform
revenue from niche products with high profit margins.

Conventional effort to challenge the long-tail in recommendation
has been two-fold [16]. First, integration with neighbor-based mod-
els [10] to capture inter-item, inter-user and cross associations in
the latent representations and second, incorporating auxiliary data
(e.g. item descriptions) to overcome limited feedback [13] or hybrid
methods [6, 11]. While neural models readily adapt auxiliary data
[8], the association/neighbor-based path is relatively unexplored
due to the heterogeneity of representations and architectures.

Given the diversity of NCF architectures and applications [3, 8, 9],
architectural solutions may not generalize well. Instead we propose
to augment NCF training to levy penalties when the recommender
fails to identify suitable niche items for users, given their history
and global item co-occurrence. To achieve this, conventional neigh-
bor models employ static pre-computed links between entities [10]
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to regularize the learned representations. While it is possible to add
a similar term to the NCF objective, we aim to learn the associa-
tion structure rather than imposing it on the model. Towards this
goal, we introduce an adversary network to infer the inter-item
association structures unlike link-based models, guided by item co-
occurrences in the feedback data. The adversary network is trained
in tandem with the recommender. It can readily integrate auxiliary
data and be extended to model inter-user or cross associations.

For each user, a penalty is imposed on the recommender if the
suggested niche items do not correlate with the user’s history. The
adversary is trained to distinguish the recommender’s niche item
suggestions against actual item pairings sampled from the data. The
more confident this distinction, the higher the penalty imposed. As
training proceeds, the adversary learns the inter-item association
structure guided by the item pairs sampled from user records while
the recommender incorporates these associations, until mutual
convergence. In summary, we make the following contributions:

• Unlike conventional neighbor models, our adversary model
learns the association structure of entities rather than im-
posing pre-defined links on the recommender model.
• Our approach is architecture and application agnostic.
• Experimental results on two diverse platforms show substan-
tial gains (by upto 25%) in long-tail item recall for state-of-
the-art NCF models while not degrading overall results.

We now present our problem formulation, model details (sec. 2, 3)
experimental results (sec. 4), and conclude in sec. 5.

2 PROBLEM DEFINITION
We consider the implicit feedback setting with binary interaction
matrix X ∈ ZMU×MI2 ,Z2 = {0, 1} given usersU = {u1, . . . ,uMU },
items I = {i1, . . . , iMI }. Items I are partitioned apriori into two
disjoint sets, I = IP (popular items) ∪ IN (niche/long-tail items)
based on their frequency in X. We use the notation Xu to denote
the set of items interacted by u ∈ U , further split into popular and
niche subsets XPu , XNu respectively.

The base neural recommender modelG learns a scoring function
fG (i | u,X), i ∈ I,u ∈ U to rank items given u’s history Xu and
global feedback X, by minimizing CF objective function OG over
recommender G’s parameters θ via stochastic gradient methods.
Typically, OG is composed of a reconstruction loss (analogous to
conventional inner product loss [5]) and a suitable regularizer de-
pending on the architecture. We adopt OG as a starting point in our
training process. Our goal is to enhance the long-tail performance
of recommender G with emphasis on the niche items IN .

3 MODEL
Most NCF models struggle to recommend niche items with limited
click histories, owing to the implicit bias of the reconstruction based
objective. Conventional neighbor models [10] apply simplistic pre-
defined associations such as Pearson correlation first, and then
learn the social representations for recommendation. In contrast,
our key insight is that these two tasks are mutually dependent,
namely generating item recommendations for user u, and modeling
the associations of recommended niche items to his history Xu .
The adversarial network paradigm [2] fits our application well,

we seek to balance the tradeoff between the popular item biased
reconstruction objective against the recall and accuracy of long-tail
item recommendations.

Towards the above objective, we introduce the adversary model
D in our learning framework to learn the inter-item association
structure in the feedback data and correlate G’s niche item rec-
ommendations with popular items in the user’s history, XPu . We
associate G’s niche item recommendations with u’s popular item
history since niche-popular pairings are the most informative (inter-
popular pairs are redundant, inter-niche pairs are noisy). The ad-
versary D is trained to distinguish “fake" or synthetic pairings of
popular and niche items sampled from X Pu and fG (i | u,X) respec-
tively, against “real" popular-niche pairs sampled from the global
co-occurrence counts inX. Themore confident this distinction byD,
the stronger the penalty on G. To overcome the applied penalty, G
must produce niche item recommendations that are correlated with
the user’s history. The model converges when both the synthetic
and true niche-popular pairs align with the association structure
learned by D. We now formalize the strategy.

True & Synthetic Pair Sampling.
• True Pairs : “True" popular-niche pairs (ip , in ) ∈ IP ×

IN are sampled from their global co-occurrence counts in
X. To achieve efficiency, we use the alias table method [7]
which has O (1) amortized cost when repeatedly drawing
samples from the same discrete distribution, compared to
O (IP ×IN ) for standard sampling. We will denote the true
distribution of pairs from X as ptrue (ip , in ).
• Synthetic Pairs : Synthetic pairs ( ˜ip , ˜in ) ∈ IP × IN are
drawn on a per-user basis with ˜in ∝ fG ( ˜in | u,X), and ˜ip
randomly drawn from XPu . The number of synthetic pairs
drawn for each user u is in proportion to |XPu |. We denote
the resulting synthetic pair distribution pθ ( ˜ip , ˜in | u), condi-
tioned on u and parameters θ of the recommender G.

Discriminative Adversary Training. The adversary D takes
as input the synthetically generated item pairs ( ˜ip , ˜in ) across all
users, and an equal number of true pairs (ip , in ) sampled as de-
scribed above. It performs two tasks:
• D learns latent representations V = [vi , i ∈ I] for the set of
items with dimensionality d .
• Additionally, D learns a discriminator function fϕ (i

p , in )
simultaneously with V to estimate the probability of a pair
(ip , in ) being drawn from ptrue (i

p , in ).

Dϕ (i
p , in ) = σ ( fϕ (i

p , in )) =
1

1 + exp(−fϕ (vip , vin ))
We implementDϕ via two simple symmetric feedforward ladders

followed by fully connected layers (Figure 2). With the parameters
of G (i.e., θ ) fixed, ϕ and V are optimized by stochastic gradient
methods to maximize the log-likelihood of the true pairs, while
minimizing that of synthetic pairs with a balance parameter µ,

ϕ∗,V∗ = argmax
ϕ

∑
u ∈U

E(in,ip )∼ptrue (ip,in )
[
σ ( fϕ (i

p , in ))
]
+

µ .E( ˜ip, ˜in )∼pθ ( ˜ip, ˜in |u )
[
log(1 − σ ( fϕ ( ˜ip , ˜in )))

]

(1)
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Figure 2: Architecture details for the discriminative adver-
sary D trained in tandem with base recommender G
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Recommender Model Training. The more confident the dis-
tinction of the fake pairs generated as ( ˜ip , ˜in ) ∼ pθ ( ˜ip , ˜in | u) by
adversary D, the stronger the penalty applied to G. As previously
described, synthetic pairs ( ˜ip , ˜in ) are drawn as ˜in ∝ fG ( ˜in | u,X),
and ˜ip randomly drawn from XPu . Thus,

pθ ( ˜ip , ˜in | u) ∝
1
|XPu |

fG ( ˜in | u,X) (2)

For sanity, we shrink pθ ( ˜ip , ˜in | u) as pθ (u) in the following
equations. Our goal is to reinforce the associations of the niche
items recommended by G to the popular items in user history. This
is achieved when the synthetic pairs cannot be distinguished from
the true ones, i.e., Dϕ ( ˜ip , ˜in ) is maximized for the synthetic pairs
sampled for each user. Thus, there are two terms in the recom-
mender’s loss, first the base objective OG and second, the adversary
term with weight λ. Note that D’s parameters ϕ,V, are now held
constant as G is optimized (alternating optimization schedule).

θ∗ = argmax
θ
−OG + λ

∑
u ∈U

E( ˜ip, ˜in )∼pθ (u )
[
logD ( ˜ip , ˜in )

]

= argmin
θ
OG + λ

∑
u ∈U

E( ˜ip, ˜in )∼pθ (u )
[
log(1 − D ( ˜ip , ˜in ))

]
(3)

Since the second term (adversary) involves discrete item samples
drawn on a per-user basis, it cannot be directly optimized by stan-
dard gradient descent algorithms. We thus apply policy gradient
based reinforcement learning (REINFORCE) [12, 14] to approximate
the gradient of the adversary term for optimization. Let us denote
the gradient of the second term of eq. (3) for u ∈ U as ∇θ JG (u),

∇θ J
G (u) = ∇θE( ˜ip, ˜in )∼pθ (u )

[
log(1 − D ( ˜ip , ˜in ))

]

=
∑

( ˜ip, ˜in )∈IP×IN

∇θpθ (u) log(1 + exp( fϕ ( ˜ip , ˜in ))

=
∑

( ˜ip, ˜in )∈IP×IN

pθ (u)∇θ log(pθ (u)) log(1 + exp( fϕ ( ˜ip , ˜in ))

= E( ˜ip, ˜in )∼pθ (u )
[
∇θ log(pθ (u)) log(1 + exp( fϕ ( ˜ip , ˜in ))

]

≈
1
K

K∑
k=1
∇θ log(pθ (u)) log(1 + exp( fϕ ( ˜ip , ˜in )) (4)

The last step introduces a sampling approximation, drawing K
sample-pairs from pθ (u). Before adversarial training cycles, the
recommender G can be pre-trained with loss OG, while D can be

pre-trained with just the maximization term for true pairs. Our
overall objective can be given by combining eq. (1), eq. (3),

O = min
θ

max
ϕ
OG + λ

∑
u ∈U

E(ip,in )∼ptrue (ip,in )
[
logDϕ (i

p , in )
]
+

µ .E( ˜ip, ˜in )∼pθ ( ˜ip, ˜in |u )
[
log(1 − Dϕ ( ˜ip , ˜in ))

]

On the whole, our framework employs a minimax strategy for it-
erative refinement: While the adversary progressively identifies
finer distinctions between true and synthetic pairs thus refining
the learned inter-item association structure, the recommender in-
corporates it in the item recommendations made to users.

4 EXPERIMENTS
In this paper, we employ a Variational Auto-Encoder (VAE-CF) [9]
and Denoising Auto-Encoder (CDAE) [15] as our base recommender
models G. Results on the ml-20m dataset already indicate strong
long-tail performance of stochastic VAE-CF (fig. 3) in comparison
to deterministic CDAE [15]. Thus, performance gains in niche-item
recall for VAE-CF with our adversarial training are particularly sig-
nificant. We use two publicly available user-item datasets suitable
for recommendation,
• Movielens (ml-20m)1: We binarized the available feedback
matrix with a threshold of 5. Only users who watched atleast
10 movies were retained.
• Ask-Ubuntu StackExchange2: Tagswere assigned to users
if they Liked, Commented, Answered or asked a Question
with the respective tags. Users with atleast 10 distinct tags
were retained.

Similar to [9], we employ strong generalization with train, test,
validation splits. Models are trained with training user interac-
tions, while the interactions in the validation and test sets are
split in two. One subset is fed as input to the trained model, while
the other is used to evaluate the system output (ranked list) on
NDCG@100,Recall@K , K = 20, 50. The architecture and train-
ing procedure is adopted from [9] for comparison. We set tradeoff
parameter λ to multiple values and explore it’s effect on recom-
mendation over different sets of items, grouped by popularity. The
balance parameter µ was set to 1 and D used a feed-forward net-
work with 2 hidden layers (300, 100) as in fig. 2 (tanh activations and
sigmoid output layer) and 300-dimensional embedding layers. All
items with less than 0.5% appearance (< 1 in 200) were discarded,
with negligible impact on results.

We will first analyze the composition of the top 100 recom-
mendations of D + G, against G trained in isolation. All items are
split into four quartiles based on their popularity. We demonstrate
the effect of the tradeoff λ on the top 100 items for validation set
users, by analyzing the quartiles they appear from (Table 1). Clearly,
the recommendations from our model with higher values of λ im-
prove the niche-tag coverage. But is this necessarily a good thing?
Only if the overall performance is not degraded by poor recom-
mendations. We analyze the overall recommendation performance
against VAE-CF and CDAE in Table 2. Conventional baselines such
as [4] are shown to be significantly weaker than our neural base
recommender models.
1https://grouplens.org/datasets/movielens/20m/
2https://archive.org/details/stackexchange
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Table 1: Composition of top-100 item recommendations to
users in item popularity quartiles (Q1-Most Popular Items)

Method ml-20m Ask-Ubuntu

Q-1 Q-2 Q-3 Q-4 Q-1 Q-2 Q-3 Q-4

CDAE (G1) 74% 26% 0% 0% 97% 3% 0% 0%
D+G1(λ = 0.1) 61% 23% 10% 6% 76% 14% 7% 3%
D+G1(λ = 1) 62% 21% 11% 6% 73% 16% 6% 5%
D+G1(λ = 10) 61% 19% 12% 8% 65% 19% 11% 5%
VAE-CF (G2) 64% 24% 8% 4% 60% 25% 9% 6%
D+G2(λ = 0.1) 58% 23% 12% 7% 53% 25% 12% 10%
D+G2(λ = 1) 59% 21% 13% 7% 55% 21% 13% 11%
D+G2(λ = 10) 59% 20% 13% 8% 54% 22% 14% 10%

Note that CDAE does not make any niche item recommenda-
tions (Q3 and Q4). Integrating our adversary to train CDAE results
in a significant jump in long-tail coverage. To further dissect the
above results, we will now observe our relative gains in Recall@50
compared to VAE-CF for each item quartile (Figure 3). We chose
VAE-CF for comparison due to it’s stronger long-tail performance.

Figure 3: Relative improvement over VAE-CFwith adversary
training,measured for each itempopularity quartile (R@50)
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As expected, our strongest gains are observed in Quartiles-3 and
4, which constitute long-tail items. Although there is a slight loss
in popular item performance for λ = 1, this loss is not significant
owing to the ease of recommending popular items with auxiliary
models if required. We observe the values of tradeoff λ between 0.1
and 1 to generate balanced results.

We now analyze overall recommendation performance against
VAE-CF and CDAE in Table 2 (N = NDCG,R = Recall). Even though
our models recommend very different compositions of items (ta-
ble 1), the results exhibit modest overall improvements for λ = 0.1
and λ = 1 over both the base recommenders. Clearly, the additional
niche recommendations are coherent since there is no performance

Table 2: Overall recommender performance on ml-20m and
Ask-Ubuntu datasets

Method ml-20m Ask-Ubuntu

N@100 R@20 R@50 N@100 R@20 R@50

CDAE (G1) 0.34 0.27 0.37 0.29 0.30 0.46
VAE-CF (G2) 0.51 0.44 0.57 0.42 0.45 0.59
D+G2(λ = 0.1) 0.53 0.45 0.59 0.43 0.46 0.61
D+G2(λ = 1) 0.52 0.44 0.58 0.42 0.46 0.59
D+G2(λ = 10) 0.48 0.41 0.55 0.40 0.43 0.56
D+G2(λ=100) 0.42 0.37 0.51 0.38 0.41 0.53

drop. However, larger λ values hurt the recommender performance.
It is thus essential to balance the adversary objective and base
recommender to obtain strong overall results.

5 CONCLUSION AND FUTUREWORK
In this paper, we investigated an adversarial learning framework
to overcome sparsity in long-tail item recommendation. Our ap-
proach modernises conventional neighbor models, learning flexible
associations guided by the feedback data. Our approach improved
the long-tail performance of VAE-CF, which by itself outperforms
CDAE by a significant margin. In future work, we plan several in-
teresting directions. Integration of inter-user or cross associations
with the item structure learned by the base recommender could
prove valuable. Extension of our idea to retrieval problems to re-
cover niche but relevant documents can prove impactful. Although
our empirical results indicate reasonable model convergence, we
plan to explore the Wasserstein metric [1] to provide a meaningful
and smooth measure of the distance between the two competing
distributions, with improved theoretical and empirical stability.
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