
Improved MHP Analyses

Aravind Sankar
Dept. of CSE, IIT Madras, India
aravindsankar28@gmail.com

Soham Chakraborty
MPI-SWS, Germany

sohachak@mpi-sws.org

V. Krishna Nandivada
Dept. of CSE, IIT Madras, India

nvk@iitm.ac.in

Abstract
May-Happen-in-Parallel (MHP) analysis is becoming the backbone
of many of the parallel analyses and optimizations. In this paper, we
present new approaches to do MHP analysis for X10-like languages
that support async-finish-atomic parallelism. We present a fast
incremental MHP algorithm to derive all the statements that may
run in parallel with a given statement. We also extend the MHP
algorithm of Agarwal et al. (answers if two given X10 statements
may run in parallel, and under what condition) to improve the
computational complexity, without compromising on the precision.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization Compilers Parallelism

Keywords MHP Analysis, Incremental Analysis

1. Introduction
May-Happen-in-Parallel (MHP) analysis helps determine if the
execution instances of two given statements (or the same statement)
may execute in parallel. MHP analysis works as a basis for many
static and dynamic program optimizations and program analysis
techniques [2, 8, 13, 17, 20, 21]. Naturally, the speed of the MHP
analysis plays a key role in the speed and effectiveness of these
dependent optimizations and analyses.

In this paper, we present new approaches to efficiently perform
MHP analysis, for programs written in task parallel languages, such
as X10 [24] and HJ [11] that support async-finish-atomic
parallelism. The async statement is used to create lightweight
tasks; finish is used as a task join/termination construct; and
atomic is used to realize mutual exclusion.

Typically, the MHP analysis is used to answer one of the
following key questions.

KEY QUESTION 1. Given a statement s1 in a program P , which
statements in P may run in parallel with s1?

KEY QUESTION 2. Given two statements s1 and s2 in a program,
may s1 and s2 run in parallel and under what condition?

We use an overloaded map (named MHP) to denote both the
variations of the analyses; the number of arguments to the function
(for example, MHP(s1), or MHP(s1, s2)) can be used to make

the distinction. These two key questions naturally lead to two
corresponding auxiliary challenges.

AUXILIARY CHALLENGE 1. Compute the MHP map for each
statement in the program (based on the key question 1).

AUXILIARY CHALLENGE 2. Compute the MHP map for each pair
of statements in the program (based on the key question 2).

The best known algorithm to answer the key question 2 (for
X10-like languages that support async-finish-atomic parallelism) is
by Agarwal et al. [1], and it has a worst-case complexity of O(N2),
where N is the program size. The key question 1 and the two aux-
iliary challenges can also be answered using this algorithm, which
incurs higher costs: O(N3) for the key question 1, and O(N4)
for both the auxiliary challenges 1 and 2. These complexities are
significantly high.

Though MHP(s1) can be computed by iteratively invoking
MHP(s1, s2) and varying s2 over all the statements in the program,
we show that from the efficiency point of view it is beneficial to
treat the two key questions separately. We present a fast incremental
MHP (iMHP) algorithm to answer the key question 1 in amortized
O(N2) time. To answer the key question 2 efficiently, we present an
algorithm aMHPnew. This algorithm extends the MHP algorithm
of Agarwal et al. [1] in a way that it lowers the computational
complexity to answer the key question 2 (from worst case quadratic
in program size to linear) without compromising on the precision
of the original algorithm. The improvements in our proposed
algorithms stem mainly from two design choices we make: (i) In
case of the iMHP algorithm, we start with a serial version of the
input program and compute the MHP information by iteratively
introducing one parallelism related construct at a time and in
the process reuse the information gathered in one iteration in the
other. (ii) In case of aMHPnew, we propose a new representation
called compact conditional vector sets (CCS) to represent the
conditional vector sets [1], and reuse the prior computed information
to reduce the overall complexity. The CCS representation consumes
significantly less space and correspondingly requires much less time
to operate on it. We show that the impact of these design choices is
further felt when we proceed to address the two auxiliary challenges.

Traditionally May-Happen-in-Parallel (MHP) analysis has been
explored in the context of several parallel programming languages [1,
4, 7, 16, 18, 22, 23]. In his seminal paper, Taylor [26] shows that the
problem of MHP analysis for all pairs of statements in a program
is undecidable in general, and is NP-complete (if we assume that
all the control flow paths are executable) for programs that use low
level synchronization primitives like Ada rendezvous. The problem
is more tractable, if we additionally assume that such low level
synchronization primitives are not present. Many of the proposed
MHP algorithms in research (including our paper) are based on
these two assumptions and are conservative in nature: if the analysis
concludes that two statements may run in parallel, then during
actual execution the statements may or not run in parallel. But if the

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of a national government. As such, the government retains a non-
exclusive, royalty-free right to publish or reproduce this article, or to allow others to do
so, for government purposes only.

CC’16, March 17–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-4241-4/16/03...$15.00

http://dx.doi.org/10.1145/2892208.2897144

207

analysis concludes otherwise, then during actual execution the two
statements are guaranteed to not run in parallel.

In the context of Java, Naumovich et al. [23] answer the key
question 1 and Barik [4] answers the key question 2. Chen et al. [5]
present some promising initial results on computing MHP analysis
(answering key question 2) for Java programs in O(N + E) time,
where N is the program size and E is the number of control edges
in the parallel reachability graph.

A simpler version of the key question 2 answers the boolean
question “Can two given statements run in parallel (oblivious to the
conditions under which the MHP analysis may hold)?" Similarly, the
corresponding auxiliary question 2 can also be framed. Recently, for
a restricted task parallel language like Featherweight X10 [14], Lee
et al. [15] present two interesting procedures to answer this simpler
key question (in time linear in the program size) and the auxiliary
challenge 1 (in time cubic in the program size, in the worst case –
though the authors claim that in practice it will be mostly linear). In
contrast, our aMHPnew algorithm (that answers the key question 2)
is much more precise than that of Lee et al; similar to the analysis
of Agarwal et al. [1], we compute conditional MHP information
for pairs of statements nested inside serial loops. Further, we work
in a more general setting: we handle atomic constructs and admit
multi-place programs (see Section 2) that are not allowed in Feath-
erweight X10. Considering the non local nature of the interaction
between the atomic sections of different asyncs in X10 (atomic
sections inside two parallel asyncs may run in parallel, only if they
are running on two different places), it is not clear, how the results
of Lee et al. can be extended in a straightforward manner to handle
such extensions to Featherweight X10. Note: multiple places and
atomics are one of the key reasons for the increased complexity of
the original algorithm of Agarwal et al. [1]. Even for us, handling
them carefully is critical to keep the complexity in check.

Contributions:

• To answer the two key questions discussed above, we present two
algorithms (one new and one as an extension to that of Agarwal
et al. [1]). Compared to the scheme of using the algorithm of
Agarwal et al. for answering the key questions and auxiliary
challenges, our scheme improves the computational complexity
by a factor ranging between O(N) to O(N2), where N is the
program size.
• We extend our proposed analysis techniques to efficiently handle

multi-place programs [24].
• To estimate the impact of the improvements in the computational

complexity of our proposed algorithms on the execution time,
we present a two-tiered evaluation scheme: (i) evaluation on pub-
licly available IMSuite [10] benchmark kernels, and (ii) a novel
empirical evaluation on synthetically generated benchmarks. We
designed a parameterized tool to generate a wide variety of
representative program structure trees (PST: a program repre-
sentation proposed by Agarwal et al. [1]), with varying number
of nodes, varying percentages of serial constructs (for exam-
ple, conditional statements, loops) and varying percentages of
parallel constructs (for example, task creation, join and atomic
constructs). We show that in both the cases our proposed tech-
niques clearly outperform the algorithm of Agarwal et al. [1].

The paper is organized as follows: Section 2 presents a quick
introduction to KX10 language (a subset of X10, over which we
describe our analyses), and a brief overview of the MHP analysis
technique of Agarwal et al. [1]. We present our extensions to
the MHP analysis for uni-place programs in Section 3. Section 4
presents the changes to our analyses to handle multi-place programs.
We discuss our evaluation in Section 5 and conclude in Section 6.

for (i=1;i<n;++i) {
finish {
for (j=1;j<n;++j) {
for (k=1;k<n;++k) {
at (A(i,j,k)) async {
atomic {
S1: temp=f(A(i,j,k));
S2: A(i,j,k)=temp

} } } } } }

(a)

(S1)

finish

loop

loop

async

atomic

loop

seq−stmt seq−stmt
(S2)

(b)

Figure 1: A Loop nest and its PST – ported from Agarwal et al. [1]

2. Background
2.1 Language
We first briefly describe a strict subset of X10 [24], (we call it
KX10), over which we define our analyses. This subset is similar
to the subset used by Agarwal et al [1] to describe their analysis.
KX10 only admits the following concurrency constructs: async,
finish, atomic, and places. The statements in KX10 can be
derived in the following manner.

S ::= // Statements
async S
| at (pexp) async S
| atomic S
| finish S
| seq(S)

Here, for a non-terminal A, seq(A) is used to denote programs
formed from A by closing under sequential constructs. These
constructs include assignments, declarations, expressions, method
invocations, loops etc.

The statement async S causes the current task to create a new
asynchronous child task to execute the statement S. The ‘parent’
task can run in parallel with the child task.

A place in KX10 is an abstraction of a computational unit
(capable of running many threads), along with some finite memory.
Or in other words, a place is a collection of data and tasks operating
on that data. Each KX10 task executes in a place. At runtime, a
KX10 program may execute over one or more places. The statement
at(pexp) async S, creates a task at place pexp to execute
S. The expression pexp (called place expression) is evaluated at
runtime to compute the place value. If the place-value of an async
that is being created matches that of the current place (or at(pexp)
is omitted), then the task is considered local. Since each data item is
local to the place of execution, KX10 enforces intra-place atomicity.

atomic S realizes a global critical section. atomic sections
(at the same place) execute as if they are executed in a mutually
exclusive way. No async or finish can be executed inside an
atomic region.

finish S is a join statement. The body S is executed with
a surrounding join such that all activities created inside S have to
terminate before the task executing the join can proceed. At runtime,
each instruction executed in KX10 program has a unique associated
task, which in turn has a unique immediately enclosing finish (IEF).
Each KX10 program has an implicit task (corresponding to the main
task) and an implicit outermost finish enclosing the implicit task.

An async statement AL contained in a statement S is called an
escaping async [9], if it is not enclosed in a finish statement
within S. The IEF of AL is not contained within S.

Using the constructs described here, we can write a parallel uni-
place loop (for example: ‘for (p=m;p<n;++p) async S’),
or parallel loop distributed across multiple places (for example:
‘for(p=m;p<n;++p) at (pexp) async S’).

208

Figure 1(a) shows a sample KX10 program (ported from the
example snippet used by Agarwal et al. [1]) Note: A(i,j,k)
accesses the three dimensional array, and is also used (as the first
argument to the at statement) to refer to the place where the array
element is distributed. Later in the paper, we use the same example
to illustrate the comparative output as generated by our proposed
algorithm.

2.2 May-Happen-in-Parallel Analysis
We give a brief overview of the intra-procedural MHP analysis
technique proposed by Agarwal et al. [1] (we will name it as
AgarwalMHP) that also works on KX10, and answers the key
question 2. We present some insights into the underlying working
of their algorithm and discuss some scopes for improvement.

The MHP algorithm AgarwalMHP is an intra-procedural al-
gorithm that works on a program representation called program
structure tree (PST) that compresses an abstract syntax tree (of a
procedure) to consider only nodes of the following types: root,
seq-stmt, loop, async, finish and atomic. The root
type corresponds to the start of the procedure, and the seq-stmt
type corresponds to all other statements except loop, async,
finish and atomic. In this paper, we will be using the words
statement and node interchangeably. Figure 1(b) shows the PST
generated for the loop nest shown in Figure 1(a).

Assume that nodes S1 and S2 have exactly k ≥ 0 loop nodes as
common ancestors in the PST. Let S1[i1, . . . , ik] and S2[j1, · · · , jk]
denote execution instances of S1 in the iteration vector 〈i1, . . . , ik〉,
and S2 in the iteration vector 〈j1, · · · , jk〉 of the common loops. The
algorithm AgarwalMHP takes as input two statements and the PST
for the procedure in which the two statements occur. The invocation
AgarwalMHP(S1, S2, PST) updates two output variables: (i) a
boolean variable mhpStatus to reflect if S1 and S2 may run in
parallel, and (ii) a set CS of condition vectors under which they
may not run in parallel. Each condition vector in CS contains k
elements each. Each such element of a vector can be one of the
binary functions =, 6=, and ∗, defined below:

= (i, j) :

{
true, if i EQ j,
false, otherwise.

6= (i, j) :

{
true, if i NEQ j,
false, otherwise.

* (i, j) : true

If mhpStatus = false and there exists 〈C1, · · ·Ck〉 ∈ CS
such that Cx(ix, jx) = true, 1 ≤ x ≤ k, then the instances
S1[i1, . . . , ik] and S2[j1, · · · , jk] are guaranteed to not run in
parallel. If mhpStatus = true, the statements may run in parallel.
For example, for the code shown in Figure 1(a), AgarwalMHP(S1,
S2) returns (false, {〈=,=,=〉, 〈6=, ∗, ∗〉}), indicating that S1
and S2 will not run in parallel if they have the same i-j-k iteration
vector, or if their iteration vectors differ on the value of i.

Figure 2(a) shows a simple extension to the MHP algorithm
of Agarwal et al. [1] to answer the key question 1. The function
computeMHP invokes AgarwalMHP repeatedly, for each node in
the procedure. Similarly, as shown in Figures 2(b) and 2(c), we can
repeatedly invoke computeMHP and AgarwalMHP to answer the
auxiliary challenges 1 and 2, respectively.

The AgarwalMHP algorithm includes two sub-analyses: uni-
place MHP analysis (that considers KX10 programs running on a
single place) and multi-place MHP analysis (that analyzes multi-
place KX10 programs, using the place equivalence analysis [1]).
Both of the these versions have the same computational complexity.
The same point holds for the three extensions presented in Figure 2.

Function computeMHP(Stmt s1, PST pst)1
begin2

foreach Stmt s2 in the Program do3
AgarwalMHP(s1, s2, pst,mhp,CS);4
if mhp then5

MHP(s1) = MHP(s1) ∪ {s2};6

end7

(a) All statements running in parallel with a given statement.

Function computeMHP-allStmts(PST pst)1
begin2

foreach node s1 in pst do3
computeMHP(s1, pst);4

end5

(b) MHP for all statements in the PST.

Function computeMHP-allPairs(PST pst)1
begin2

foreach node s1 in pst do3
foreach node s2 in pst do4

AgarwalMHP(s1, s2, pst,mhp,CSo);5
MHP(s1, s2) = mhp; CS(s1, s2) = CSo;6

end7

(c) MHP for all pairs of nodes in the PST.

Figure 2: Answering the key question 1, and auxiliary challenges
using AgarwalMHP.

Complexity of AgarwalMHP and the presented extensions : The
main source of the complexity of AgarwalMHP is a loop that
traverses over the partial height of the PST (say, bound by H) and
conditionally builds and inserts a vector of size O(H) to the vector
set CS (Step 6(b), Figure 2, Agarwal et al. [1]). This leads to a worst
case complexity of O(H2) (this is despite the use of efficient union-
find data structures [6], for set union) – which, in the worst case,
is quadratic in the PST size. This is in contrast to the complexity
of O(H) as claimed by the authors, who seem to ignore the cost
involved in building and adding a condition vector of size O(H) to
an existing set.

Assuming the size of PST to be N , we can now derive the
complexities of the computeMHP, computeMHP-allStmts,
and computeMHP-allPairs to be O(H2×N), O(H2×N2),
and O(H2 ×N2), respectively.

3. Improvements to MHP Analysis
We present two different algorithms to answer the two key questions
and the auxiliary challenges presented in Section 1. We first present
an incremental MHP algorithm to answer the key question 1 and
then present an extension to the MHP algorithm of Agarwal et al. [1]
to efficiently answer the key question 2. For the ease of presentation,
we first present our extensions assuming programs to be running
on a single place. We extend our presented analyses for multi-place
programs in Section 4.

3.1 List of Statements that May Run in Parallel With a
Statement

We now present our incremental MHP (iMHP) algorithm to answer
the key question 1. The core idea behind our iMHP algorithm is that
we can incrementally compute the MHP information by considering
each parallel element in the program (such as finish, async,
and atomic) one after the other as an update. The advantage of

209

Function iMHP-driver(PST pst)1
begin2

(SeqP, Lst) = Replace all parallel elements in pst3
with dummy nodes and store the updates to be performed;
// Lst contains all the updates.
PST CP = SeqP; // Current Program.4
MHP = {};5

6
LstFinish = Entries in Lst of the form ‘replace7
L:dummy by L:finish ’;
foreach r ∈ LstFinish do8

iMHP-addFinish(CP, L);9
CP = r(CP)10

11
LstAsync = Entries in Lst of the form ‘replace12
L:dummy by L:async ’;
foreach r ∈ LstAsync do13

iMHP-addAsync(CP, L);14
CP = r(CP)15

16
LstAtomic = Entries in Lst of the form ‘replace17
L:dummy by L:atomic ’;
foreach r ∈ LstAtomic do18

iMHP-addAtomic(CP, L);19
CP = r(CP)20

end21

Figure 3: Driver for the incremental MHP analysis. Process the
finish, async and atomic statements in that order.

such a scheme is that for each such update, the MHP maps of only a
small localized subset of nodes need to be modified.

Figure 3 shows the driver for our incremental MHP algorithm.
To compute the MHP information for each statement in a given
task parallel program, we start with the serial version of the PST,
obtained by replacing each of the PST nodes corresponding to
the parallel elements (asyncs, finish and atomic) with a
corresponding dummy node. Each such dummy node (for example,
one corresponding to L:async) has an entry in Lst, as an update
to be applied (for example, ‘replace L:dummy by L:async’).

We re-introduce the parallel elements in a particular order
(finish nodes, async nodes, and then atomic nodes). We
choose this order to improve the efficiency of our algorithm. For each
re-introduction, we invoke the corresponding iMHP-add method
(shown in Figure 4) that takes as input the current PST and the node
corresponding to the chosen update. Our analysis updates the MHP
map to include the MHP information for the modified PST. We also
apply the chosen update on the PST to derive the modified PST. We
now discuss, how we compute the MHP information on different
types of updates.

finish update (replace L:dummy by L:finish) : We intro-
duce the finish nodes before introducing any async statement.
Thus the addition of finish nodes does not affect the MHP maps
of any other statement. The iMHP-addFinish routine (shown in
Figure 4(a)) sets the MHP map corresponding to the finish node.
As discussed in Section 2, no async escapes a finish node. For
each statement, EscAsyncs keeps the information on the asyncs
that may escape the statement; the EscAsyncs map is used later in
the paper.

async update (replace L:dummy by L:async) : Say the IEF of
L is given by the singleton set A. After the update, L additionally

Function iMHP-addFinish(PST pst, Node L)1
begin2

MHP(L) = {}; // Initialize the MHP map.3
EscAsyncs (L) = {}; // No task escapes L4

end5

(a) Replacing S by finish S.

Function iMHP-addAsync(PST pst, Node L)1
begin2

A = IEF (L);// Tasks that may contain L3
m = {}; // to contain MHP(L)4
// Add to the MHP map of each stmt

inside the proposed task, all the
stmts within the common IEF that
may start after the task.

foreach s ∈ Descendents(A) do5
if s is reachable from L then m = m ∪ {s};6

D = Descendents(L);7
foreach l ∈ D do8

MHP(l) = MHP(l) ∪m;9

// Update the MHP maps of the
statements in MHP(L)=m

foreach a ∈ m do10
MHP(a) = MHP(a) ∪D;11

// Update the EscAsyncs maps.
P = L;12
repeat13

EscAsyncs(P) = EscAsyncs(P) ∪ {L};14
P = Parent of P in the PST;15

until P is a finish node ;16
end17

(b) Replacing S by async S.

Function iMHP-addAtomic(PST pst, Node L1)1
begin2

foreach L2 ∈ MHP(L1) do3
if inAtomic(L2) AND L1 and L2 access the same4
memory location and one of them is a write then

MHP(L1) = MHP(L1)− {L2};5

foreach L2 ∈ Nodes do6
if inAtomic(L2) AND L1 and L2 access the same7
memory location and one of them is a write then

if L1 ∈ MHP(L2) then8
MHP(L2) = MHP(L2)− {L1};9

foreach s ∈ Descendents(L1) do10
inAtomic (s) = true;11

end12

(c) Replacing S by atomic S.

Figure 4: Components of the Proposed incremental MHP analysis –
updates to the MHP maps on introducing a new parallel construct.

runs in parallel with all the descendants of A that are reachable
from L during program execution. Further, the lifetime of L does
not exceed that of A. Figure 4(b) presents our incremental MHP
algorithm that updates the MHP for each async update.

atomic update (replace L:dummy by L:atomic) : Agarwal
et al. [1] observe that instances of two statements S1 and S2
occurring in atomic sections will have MHP(S1, S2) = false.

210

We implement the idea (see Figure 4(c)) in two phases: (i) For
each statement in the program, we maintain a map inAtomic:
Stmts→ boolean; inAtomic(S1) returns true, if S1 is inside
an atomic block. Upon introducing a new atomic block, we update
the inAtomic map of all the statements inside the atomic block to
true. (ii) We modify the MHP map of S1 and all the MHP maps
of all those tasks that contain S1.

Example: To illustrate the working of our incremental MHP
algorithm, we use Figures 5(a) and 5(b) that present the example
code and the corresponding PST that was used by Agarwal et al. [1].
After the initial pre-pass, we get a modified PST (Figure 5(c)) and
Lst contains the list of updates to be applied. Figure 6 shows how
the MHP maps change with each update of our incremental MHP
algorithm. We start with the finish updates and then proceed onto
the async updates. The order in which we choose the individual
finish updates or async updates does not have a bearing on the
final MHP information. The root node does not run in parallel
with any of the nodes and we avoid showing the same in the MHP
maps in Figure 6, for brevity. A sample update S6:async indicates
that we replace S6:dummy by S6:async in the PST. The associated
iMHP-addAsync call updates the MHP maps of only three nodes
S7, S11, and S12.

3.2 MHP Relation Between Two Statements
We now present our extensions to the MHP algorithm of Agarwal
et al. [1] to answer the key question 2 presented in Section 1, for
uni-place programs. Instead of computing the MHP relation as an
inverse of NEP (Never Execute in Parallel) relation, we directly
compute the MHP relation. The main source of our efficiency stems
from the design choice we make to represent conditional vector sets
using a compact representation called CCS.

3.2.1 Compact Conditional Vector Sets (CCS)
An interesting aspect of the conditional vectors used in the uni-place
analysis of AgarwalMHP is that in any vector there is at most one
6= function. All the functions to the left of this function can only
be = and functions to the right of 6= can only be ∗. If there is no 6=
function in the vector, then all the entries are = functions. Thus, it
is enough to note the index of the 6= function to derive the rest of
the vector (we will call it the key index); thus CS can be seen as a
set of key indices. Assuming that the original conditional vectors
stored the elements at index 1 onwards, the special value ‘0’ for the
key index can be used to denote the vector where all the entries are
“=” functions.

We store the conditional vector set as a zero based array (CCS)
containingM+1 boolean elements, whereM is the number of loops
in the program. We index each loop with a unique positive index and
the ith element in the CCS for any node indicates if the condition
vector with key value i is a member of the conditional vector set for
that node. For example, CCS[i] = true indicates that the condi-
tional vector with key value i is a member of the conditional vector
set; we call it the compact conditional vector set representation. For
example, the conditional vector set CS ={〈C1 = “ = ”, C2 =
“ 6= ”, C3 = “ ∗ ”〉, 〈C1 = “ = ”, C2 = “ = ”, C3 = “ 6= ”〉}, is
represented as CCS = [false,false,true,true]. The zeroth
element is set to false, to indicate that this set does not contain
the vector containing all “=” functions.

We also note that any two pairs of statements that have the same
least common ancestor in the PST will have identical values in
the positive indices of CCS (the value at zeroth index may differ).
Our goal is to store the CCS information at each of the ancestor
(non-leaf) nodes.

S0: finish {
S1: async {
S13: finish {

S5: ...
S6: async S11
S7: async S12

}
S8: ...
S9: ...
S10: ... } // end async

S2: ... } // end finish
S3: ...
S4: ...

(a) Input program.
Root

S0:finish S3

S2

S8 S10

S1:async

S5

S13:finish S9

S4

S7:async

S12

S6:async

S11

(b) Generated PST.
Root

S0:dummy S3

S2

S8 S10

S1:dummy

S5

S13:dummy S9

S4

S7:dummy

S12

S6:dummy

S11

(c) PST after initialization.

Figure 5: Input program used by Agarwal et al. [1], the correspond-
ing PST and the resulting PST after our initialization pre-pass.

3.2.2 MHP Relation for a Pair of Statements
For a given parallel program, the MHP related queries for a pair of
statements (say, s1 and s2) in the input program are answered by
invoking the function aMHPnew(s1, s2), shown in Figure 7.

aMHPnew invokes a procedure computeCCS (shown in Fig-
ure 7(a)) that computes and stores the CCS information for a given
node in the PST. Note that the index (id) of any loop node is a
positive integer. The computational complexity of this procedure is
O(H), where H is the maximum height of the PST.

211

Initialization:
Lst = {S13:finish, S0:finish, S6:async,

S7:async, S1:async}

Process finish updates:
S13:finish: MHP(s) = {},

where s∈{S0, S1, S2, S3, S4, S5, S6,
S7, S8, S9, S10, S11, S12, S13}

S0:finish: MHP(s) = {},
where s∈{S0, S1, S2, S3, S4, S5, S6,

S7, S8, S9, S10, S11, S12, S13}

Process async updates:
S6:async: MHP(S11) = {S12, S7}
MHP(S7) = MHP(S12) = {S11}
MHP(s) = {} where s6∈{S7, S11, S12}

S7:async: MHP(S11) = {S12, S7}
MHP(S7) = MHP(S12) = {S11}
MHP(s) = {} where s6∈{S7, S11, S12}

S1:async: MHP(S11) = {S2, S7, S12}
MHP(S2) = {S5, S6, S7, S8, S9, S10, S11,

S12, S13},
MHP(S7) = MHP(S12) = {S2, S11},
MHP(s) = {S2},

where s∈{S5, S6, S8, S9, S10, S13},
MHP(S0) = MHP(S1) = MHP(S3) = MHP(S4)={}

Figure 6: MHP sets computation, for the example shown in Fig-
ure 5.

The algorithm aMHPnew is presented in Figure 7(b). Most part
of this algorithm is a faithful recasting of the NEP algorithm and
the main MHP computation algorithm of Agarwal et al. [1], for
uni-place programs, in our modified settings. One interesting point
to note is that we reuse the CCS information from the least-common-
ancestor (LCA) for all the non-zero indices. We set CCS[0] for a
given pair of statements, if the condition vector containing all "="
functions can be part of the conditional vector set.

3.3 Complexity and Efficiency
We now discuss the computational complexity of our presented MHP
algorithms to answer the key questions and auxiliary challenges
discussed in Section 1. We will use N to denote the program size
(or the number of nodes in the PST), H to denote the maximum
height of the PST,C to denote the maximum number of concurrency
constructs (typically a very small number), and α to denote the
inverse Ackermann function [6], a slow growing function. These
results are summarized in Figure 8.
Key Question 1: Given a task parallel program, the incremental
MHP is computed by repeatedly invoking the iMHP-add routines.
While the iMHP-addFinish is an O(1) operation, the other two
iMHP-add routines may execute a few ‘set union’, ‘find element’
or ‘delete element’ operations (at most N times). Use of efficient
disjoint-set union-find algorithms can help in near constant time
(O(α(N))) union, find [6] and delete element [3, 12] operations.
Thus the amortized complexity of invoking the iMHP-add routines
is O(N × α(N)). Since these iMHP-add routines are invoked at
most C times, it results in an overall complexity of O(C × N ×
α(N)) ≈ O(C ×N). Compared to computeMHP, our algorithm
improves the complexity by a factor ofO(H2/C). In the worst case,
where H = O(N) and C = O(N), the resulting improvement is a
factor of O(N).
Auxiliary challenge 1: The cost of computing the MHP infor-
mation for all the statements in the program, using our algo-
rithm (same as the one used to answer Key Question 1), is

Function computeCCS(Stmt L)1
begin2

if L.CCS is already available then3
return L.CCS;4

L.CCS = new boolean[maxHeight+1];5
boolean seqLoop = true;6
Stmt P = L;7
while P is 6= root do8

if P is an async node then9
seqLoop = false;10

if P is a finish node then11
seqLoop = true;12

if P is a loop node then13
L.CCS[P.id] =seqLoop;14

P = P.parent();15

return L.CCS;16
end17

(a) Compute CCS for the given node.

Function aMHPnew(Stmt S1, Stmt S2)1
begin2

Stmt A = LCA(S1, S2);3
boolean asyncS1 = false;4
for (N = S1;N 6= A;N = N.Parent()) do5

if N is an async node then asyncS1 = true;6
if N is a finish node then asyncS1 = false;7

boolean asyncS2 = false;8
for (N = S2;N 6= A;N = N.Parent()) do9

if N is an async node then asyncS2 = true;10
if N is a finish node then asyncS2 = false;11

boolean [] retCCS =computeCCS(A);12
retCCS[0] = false;13
if S1 6= S2 then14

AS1 = (S1.Parent() eq A)?S1 : S1.Parent();15
AS2 = (S2.Parent() eq A)?S2 : S2.Parent();16
switch (asyncS1, asyncS2) do17

case (false,false)18
retCCS[0] = true;19

case (false,true)20
retCCS[0] = ¬(AS2 dominates AS1?);21

case (true,false)22
retCCS[0] = ¬(AS1 dominates AS2?);23

case (true,true)24
retCCS[0] = false;25

26

if inAtomic(S1) AND inAtomic(S2) AND S1 and S227
must access the same memory location and one of them is
a write then

return (false, retCCS);28

if every element of retCCS has value false then29
return (true, retCCS);30

return (false, retCCS);31
end32

(b) Algorithm to answer key question 2.

Figure 7: Compute MHP information for a pair of statements.

212

O(C × N × α(N)) ≈ O(C × N). Compared to the algo-
rithm computeMHP-allStmts, our algorithm improves the
complexity by a factor of O(H2 ×N/C). In the worst case, where
H = O(N) and C = O(N), the resulting improvement is a factor
of O(N2).
Key Question 2: To compute the MHP relation between two given
statements in the program, we invoke the function aMHPnew. Con-
sidering that (i) the time to compute the Least Common Ancestor
(LCA) can be done in constant time [25], (ii) the dominator informa-
tion being a standard analysis can be considered to be pre-computed,
and (iii) computeCCS takesO(H) time, our algorithm aMHPnew

takes O(H) time. Compared to AgarwalMHP that takes O(H2)
time, our algorithm improves the complexity by a factor of O(H).
In the worst case, where H = O(N), the resulting improvement is
a factor of O(N).
Auxiliary challenge 2: Now we compute MHP map for each pair, by
repeatedly invoking the function aMHPnew; this takes O(H ×N2)
time. Compared to computeMHP-allPairs (Figure 2(c)) that
takes O(H2 × N2) time, our algorithm improves the complexity
by a factor of O(H). In the worst case, where H = O(N), the
resulting improvement is a factor of O(N).

3.4 Discussion
• Consider the code snippet shown in Figure 1(a). The call

aMHPnew (S1, S2) returns (false, [true, true, false,
false]). This implies that two instances of S1 and S2 may
not run in parallel, (a) when they have the same iteration vector
– given by the first true value in the CCS, or (b) when they
have different values of i in their iteration vector – represented
by the second value of true in the CCS. Or in other words,
two instances of S1 and S2 may run in parallel, when they are
running in the same iteration of i and different iterations of j
and k (corresponding to the two false entries in the condition
vector). In Section 4, we further refine this result by taking into
consideration the atomic construct and the multi-place code.
• The traditional approach (computeMHP) does not reuse infor-

mation computed in prior iterations of the algorithm. In contrast,
we reuse (in computeCCS) the CCS information computed
for different pairs of statements having the same least-common-
ancestor. Though this does not change the computational com-
plexity of our algorithm, in practice, this improves the execution
time of our response to the auxiliary challenge 2.
• iMHP: Our analysis starts with the serial version of the program

and computes MHP information incrementally by reintroducing
the parallelism related annotations in a particular order(“finish"
followed by “async" and “atomics"). The order is important: if
“finish" annotations are introduced after or during the introduc-
tion of the “async" annotations, then after each introduction of
the “finish" annotation, we have to recalculate the MHP informa-
tion of all the statements under the “finish" node. But when we
introduce the “finish" annotations in a serial program, it does not
change the MHP maps. Further, say we reintroduce an “async"
annotation on a node s1. The MHP information of the descen-
dant nodes of s1 can be incrementally updated (not recomputed
from scratch) using the information about the tasks that may be
executed after s1 and are under the same immediately-enclosing-
finish (IEF), and vice versa.
• Summary: The improvements realized in the iMHP algorithm is

mainly because of the localized updates resulting from the incre-
mental introduction of the parallel constructs. And the improve-
ments obtained in aMHPnew are mainly because of compact
representation of CCS. Further, reusing the CCS information
computed in prior invocations improves the analysis time, in
practice.

4. MHP for Multi-Place Programs
We now extend our proposed analysis techniques presented in
Section 3, to handle multi-place programs. Our extension is based
on the observation of Agarwal et al. [1] that two statements inside
two different atomic regions are considered to not run in parallel,
only if they are guaranteed to be executed in the same place. We will
assume that a global value numbering algorithm has already been
run to identify the places at which different activities are invoked
(an assumption similar to that by Agarwal et al. [1]). For each PST
node S, we assume that the map V (S) gives the value number of
the place at which S will execute.

4.1 Computing MHP(L1) for Multi-Place Programs
We can extend our incremental MHP (iMHP) algorithm to answer
the key question 1, for multi-place programs, in a straightforward
way. This is done by updating the predicates at Line 4 and 7 in the
iMHP-addAtomic routine (Figure 4(c)) to the following:
if (inAtomic(L2) AND (V (L1) == V (L2)) AND L1 and L2

access the same memory location and one of them is a write)

4.2 Computing MHP(L1, L2) for Multi-Place Programs
We now present an extension to our algorithm to answer the key
question 2, for the multi-place KX10 programs. The basis of
the multi-place MHP analysis of Agarwal et al. [1] is the Place
Equivalence (PE) analysis that tells if two given statements (both
present inside atomic regions) run at the same place. We present
an extension to their PE analysis. We then extend the aMHPnew

algorithm (using the modified PE analysis) to compute the MHP
information for multi-place programs.

4.2.1 Compact Conditional Vector Sets for PE Analysis
Similar to the approach of Section 3.2, we modify the conditional
vector representation to derive a second type of compact representa-
tion called CCSp, to suit the results of PE analysis.

An interesting aspect of the conditional vectors used in the PE
analysis of AgarwalMHP is that in any conditional vector, all the
functions to the left of ∗ can only be =, and functions to the right
of ∗ can only be ∗. If there is no ∗ function in the vector, then all
the entries are = functions. Thus, it is enough to note the index of
the ∗ function to derive the rest of the vector (we will call it the
key index); and conditional vector sets can be stored as a set of key
indices. Similar to Section 3.2, we will assume that the original
conditional vectors stored the elements at index 1 onwards, and the
special value ‘0’ for the key index is used to denote the vector where
all the entries are “=” functions. Further, we will store CCSp as a
zero based boolean array of size M + 1, where M is the number of
loops in the program.

4.2.2 PE Analysis
Figure 9 gives a sketch of our scheme to perform PE analysis.
Given two statements S1 and S2, we invoke the computeCCSp
function on the least common ancestor of S1 and S2. This function
requires information about loops for which the place-expression of
any async is place-invariant. Similar to the scheme of the original PE
analysis [1], we compute the placeLocalLoops information, in
a global loop-invariant pre-pass, and use it in the computeCCSp
function. This function sets the CCSp entry corresponding to each
place local loop to true. Since the cost of the set-find operation is
nearly O(1), the computational complexity of the computeCCSp
routine is O(H).

Given two nodes S1 and S2, the algorithm PEnew returns a
pair (pe, Cp). If pe = true, then it implies that S1 and S2 will
always run at the same place. Cp contains the conditional vectors
represented in CCSp form, under which S1 and S2 may run at

213

Agarwal et al. [1] Our approach Impro-
Complexity Worst-case Algorithm Complexity Worst-case Algorithm vment

MHP(S1) O(H2 ×N) O(N3) computeMHP O(C ×N) O(N2) iMHP O(N)
∀ S1: MHP(S1) O(H2 ×N2) O(N4) computeMHP-allStmts O(C ×N) O(N2) iMHP O(N2)
MHP(S1, S2) O(H2) O(N2) AgarwalMHP O(H) O(N) aMHPnew O(N)
∀ S1, S2: MHP(S1, S2) O(H2 ×N2) (ON4) computeMHP-allPairs O(H ×N2) O(N3) aMHPnew O(N)

Figure 8: Comparison of time complexity between iMHP and the MHP algorithm of Agarwal et al. [1].

Function computeCCSp(Stmt L)1
begin2

if L.CCS is already available then3
return L.CCS;4

L.CCSp = new boolean[maxHeight+1];5
Stmt P = L;6
Set pLocalLoops = φ;7
while P is 6= root-loop-node do8

if P is an async node with place expression e then9
pLocalLoops = placeLocalLoops(e);10

if P is a loop node then11
if P ∈ pLocalLoops then12

L.CCSp[P.id] =true;13

P = P.parent();14

return L.CCSp;15
end16

(a) compute CCSp for all the nodes.

Function PEnew(Stmt S1, Stmt S2)1
begin2

Stmt A = LCA(S1, S2);3
boolean asyncS1 = · · ·; // Similar to Fig.74
boolean asyncS2 = · · ·; // Similar to Fig.75
boolean [] retCCSp = computeCCSp(A);6
retCCSp[0] = false;
if S1 6= S2 then7

if V (S1) = V (S2) then // global place numbers8
match

retCCSp[1] = true;9
return (true, retCCSp);10

else if ¬asyncS1 ∧ ¬asyncS2 then11
retCCSp[0] = true;12

if every element of retCCSp has value false then13
return (true, retCCSp);14

return (false, retCCSp);15
end16

(b) Compute the place equivalence relation for a pair of statements.

Figure 9: Compute place equivalence information.

the same place. After invoking the computeCCSp function, the
PEnew function checks if the global place numbers of S1 and S2
match and if so, returns a tuple with its first element set to true. If
instances of S1 and S2 may not run at the same place conditionally,
then PEnew returns a tuple with its first element set to false, and
the vector retCCSp contains the corresponding conditions.

4.3 Multi-Place aMHPnew

To answer the MHP related queries in multi-place programs, we
modify the aMHPnew algorithm to return a triplet (instead of a
pair); the third field in the triplet indicates a conditional vector set
in CCSp form. The modifications are as follows:

• Replace the code in Figure 7, line 28 with the following:

Say (pe, Cp) = PEnew(S1, S2);
return (¬pe, retCCS, Cp);

• Each of the other return statements, in Figure 7, of the form re-
turn (b, val) is replaced with return (b, val, emptyCp), where
emptyCp is a boolean array with all the entries set to false.

Example: For the example shown in Figure 1, let us assume that
the array A is distributed using (BLOCK, BLOCK, *) distribution.
It indicates that for any fixed value of i and j, all the elements
A(i,j,k), for varying values of k, are mapped on to the same
place. Invocation of PEnew(S1, S2), first invokes computeCCSp,
with the loop identifier of the k loop as the argument. Which, in
turn, finds that the k loop is a place local loop and returns the vector
[false, false, false, true]. The computeCCSp function,
when invoked identifies that the place local loops for the async
under consideration is the k loop. PEnew(S1, S2) returns (true,
[true, false, false, true]). This indicates that instances of
S1 and S2 will execute in the same place for varying values of k,
with same values of i and j.

Now incorporating the place equivalence analysis (given by
PEnew) in the MHP analysis (given by aMHPnew), we get
aMHPnew(S1, S2) = (false, [true, true, false, false],
[true, false, false, true]). That is, instances of S1 and S2
may not run in parallel, if (i) their iteration vectors have the same
values for i, j, and k, or (ii) if their iterations vectors have different
values of i, or (iii) if their iteration vectors have the same values of
i and j.

4.4 Complexity of MHP analyses for Multi-Place Programs
As it can be trivially seen, the complexity of the iMHP algorithm
does not change because of the changes suggested in Section 4.1.

Let us now consider the MHP analysis discussed in Sec-
tion 4.2. The cost of PEnew algorithm is bounded by the cost
of computeCCSp. And the latter is bound byO(H). Thus the cost
of the modified aMHPnew algorithm for multi-place programs is
still bound by O(H). Thus, in terms of precision, our analysis is as
precise as that of Agarwal et al. [1], but in terms of complexity it is
clearly better.

5. Evaluation
The goal of this section is to study the empirical gains resulting
from the improvements in computational complexities (summarized
in Figure 8). We implemented our proposed algorithms and that
of Agarwal et al. [1] and studied the execution behavior of these
algorithms. The study is divided into two parts : (i) evaluation over
real benchmarks, and (ii) evaluation over synthetic benchmarks.

214

Name #LOC #PST #finish #async #atomic
1. BF 374 27 3 3 0
2. DST 578 64 8 8 3
3. BY 555 53 5 5 1
4. DR 407 29 2 2 0
5. DS 718 119 3 3 0
6. KC 579 108 12 12 2
7. DP 495 44 5 5 1
8. HS 511 46 6 6 0
9. LCR 326 26 4 4 0
10. MIS 443 48 6 6 2
11. MST 981 149 15 15 6
12. VC 476 45 6 6 0

Figure 10: Some characteristics of the IMSuite kernels.

5.1 Evaluation on Real Benchmarks
We evaluated our proposed algorithms on the publicly available
IMSuite [10] kernels that implement twelve classical distributed
algorithms : breadth first search (BF – computes the distance of every
node from the root and DST – computes the BFS tree), byzantine
consensus (BY), routing table creation (DR), dominating set (DS),
maximal independent set (MIS), committee creation (KC), leader
election (DP – for general network, HS – for bidirectional ring
network, and LCR – for unidirectional ring network), spanning tree
(MST), and vertex coloring (VC). Figure 10 shows some of the
characteristics of these kernels, including the number of lines of
code, number of finish, async, and atomic constructs. This
also lists the number of PST nodes in the main parallel section of
the program (not the whole program). Note: the number of finish
constructs matches the number of asyncs here as each async is
inside a for-loop which is embedded inside a finish.

We use our proposed algorithms to answer the two auxiliary
challenges (1 and 2). All the MHP queries were based on the PST
nodes of the main parallel section of the code. Figure 11 shows a
comparison between iMHP and computeMHP-allStmts, and
aMHPnew and computeMHP-allPairs. For each of the bench-
marks, we use the average analyses time over five invocations each.
Overall, it can be seen that iMHP runs 80–96% faster (compared to
the baseline computeMHP-allStmts), and aMHPnew runs 68–
88% faster (compared to the baseline computeMHP-allPairs).
This is in accordance to the improved complexity of the proposed
algorithms (Figure 8).

5.2 Evaluation on Synthetic Benchmarks
To further analyze the impact of our proposed analyses in the con-
text of different types of programs (that may be written), we first
designed a parameterized tool to generate a wide variety of repre-
sentative PSTs. These parameters can be used to vary the number
of nodes, percentage of serial constructs (for example, conditional
statements and loops) and percentage of parallel constructs (for ex-
ample, task-creation, join and atomic constructs) in the PSTs. These
generated PSTs represent many varieties of X10 programs, both
existing and the ones that may be written in future. We first discuss
some details of our PST generation scheme and then present an
evaluation of our proposed techniques using the generated PSTs.

5.2.1 PST Generator
We first make a minor extension to the structure of PST (Section 2) :
besides loop, async, finish, atomic, and seq-stmt, we
additionally expose If and IfElse nodes. Further, each of the
seq-stmt nodes is classified into one of the following five cate-
gories: Assignment, Break, Continue, FuncCall, and Return. The
addition of the new node types and classification of the seq-stmt

node helps expose the control flow information (e.g., dominators)
of the underlying program.

The PST generation algorithm takes as input the total number of
nodes and a distribution of various types of nodes (which is specified
as a percentage). The PST generation algorithm generates a PST
with the following additional natural constraints : a seq-stmt
node can only be a leaf node; an atomic node cannot be an
ancestor of a finish or async node; a Break/Continue node
should be inside a sequential loop; and nodes such as async,
finish, atomic, and loop should have at least one child. After
the PST is generated we use the standard algorithms [19] to compute
the successors, predecessors and dominators.

The PST generator can be accessed at: http://www.cse.
iitm.ac.in/~krishna/PSTGen/

5.2.2 Impact of the Proposed Techniques on PSTs with
Varying Amounts Parallelism

We first aim to study the impact of our proposed techniques on
PSTs with varying parallelism. We fix the number of nodes of the
PST to 10,000 and fix the percentage of leaf nodes to 50%, where
all the five category of statements may occur equally likely. We
vary the number of async nodes in the program (from 1% to
25%, in increments of 1%), and the balance nodes are randomly
chosen among loop, finish, atomic, If and IfElse nodes.
Our study of the example programs shipped with X10 distribution
and the IMSuite benchmark suite [10] showed that in practice
the percentage of async nodes are typically small (≈ 1 − 5%),
in simple applications/kernels. PSTs with 20-25% async nodes
represent programs with rather large number of asyncs. Thus, the
chosen range for the percentage of asyncs covers a wide range of
programs that may be written.

Figure 12 presents a comparative study of our proposed algo-
rithms for varying percentage of async nodes. For each such cho-
sen percentage, we ran the analyses five times each (by varying
the random seed each time) and report the average execution time
over these runs. This is done to amortize the effects of the possi-
ble variations in the PST based on the chosen random seed. Fig-
ure 12(a) presents a comparison of the iMHP algorithm and the
function computeMHP-allStmts (Figure 2(b)), in answering
the auxiliary challenge 1: ∀ S1: MHP(S1) and ∀ S1, S2: MHP(S1,
S2). It can be seen that our proposed approach leads to significant
improvements (between approximately 92% to 99% improvement,
and on average 95.9%). The percentage improvement of scheme B
Vs scheme A is given by 100×(time to run scheme A − time to
run scheme B)/(time to run scheme A). It can be seen that when
the number of async nodes in the PST is very low (≤ 2%), the
improvements are slightly on the higher side (≈ 99%). This per-
centage comes down marginally to around 94% (on average) when
the PST has large number of async nodes (≥ 20%). This is partly
because of the fact that our proposed iMHP analysis is quite fast
(cost nearly zero) in handling constructs other than asyncs. And in
case of asyncs, the cost we incur is slightly more (compared to the
non-async nodes), though the cost is still less than that of Agarwal
et al. We are confident that such a fast incremental analysis will be
useful in efficient implementation of optimizations for task parallel
programs (that may require re-computation of MHP information
after each transformation) or refactoring tools that incrementally
parallelize a given program, in a semantic preserving manner, by
using the up-to-date MHP information.

Figure 12(b) presents a comparison of the aMHPnew algorithm
and the function computeMHP-allPairs (Figure 2(c)), in an-
swering the auxiliary challenge 2. Again, compared to the baseline
computeMHP-allPairs that uses the algorithm of Agarwal et
al (computeMHP), our proposed mechanism results in significant
savings (between 82% to 84%, on average 83.3%). We observed

215

http://www.cse.iitm.ac.in/~krishna/PSTGen/
http://www.cse.iitm.ac.in/~krishna/PSTGen/

88	
91	 91	

86	

96	 94	 93	
88	

80	
87	

95	

83	
89	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

BF	 DST	 BY	 DR	 DS	 KC	 DP	 HS	 LCR	 MIS	 MST	 VC	 AVG	

%
	Im

pr
ov
em

en
t	

Benchmarks	

(a) auxiliary challenge 1: iMHP Vs computeMHP-allStmts.

88	

68	

83	
79	 81	

69	

79	
75	

80	 80	
75	 75	 77	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

BF	 DST	 BY	 DR	 DS	 KC	 DP	 HS	 LCR	 MIS	 MST	 VC	 AVG	

%
	Im

pr
ov
em

en
t	

Benchmarks	

(b) auxiliary challenge 2: aMHPnew Vs computeMHP-allPairs.

Figure 11: Impact of the proposed algorithms on the IMSuite kernels.

 20

 40

 60

 80

 100

 AVG 0 5 10 15 20 25

%
Im

pr
ov

em
en

t
iM

H
P

V
s

co
m

pu
te

M
H

P-
al

lS
tm

ts

Percentage of asyncs

(a) auxiliary challenge 1: iMHP Vs computeMHP-allStmts

 20

 40

 60

 80

 100

 AVG 0 5 10 15 20 25

%
Im

pr
ov

em
en

t
A

M
H

Pn
ew

 V
s

co
m

pu
te

M
H

P-
al

lP
ai

rs

Percentage of asyncs

(b) auxiliary challenge 2: aMHPnew Vs computeMHP-allPairs

Figure 12: Impact of the proposed techniques on PSTs with varying parallelism

that increasing the percentage of async nodes did not have much
visible effect on the gains registered by our aMHPnew analysis.

5.2.3 Impact of the Proposed Techniques on PSTs with
Varying Size

We now discuss the impact of the PST size (or in practice, the
program size) on the effectiveness of our proposed algorithms.
We fix the percentage number of asyncs to 5% (indicating a
moderately parallel program), and the rest of the PST non-leaf
nodes are equally distributed. We then varied the number of PST
nodes from 100 to 10,000 (in increments of 100) and measured the
performance. It may be noted that the use of the generated PSTs
helps us conduct such a study, which is otherwise not possible using
real world X10 programs (due to non-availability of such wide
variety of X10 programs in public domain).

Figure 13 presents an evaluation of our proposed algorithms for
varying number of PST nodes. Like in the previous section, we use
our proposed algorithms to answer the two auxiliary challenges (1
and 2). Figure 13(a) presents a comparison of the iMHP algorithm
and the computeMHP-allStmts function, in answering the
auxiliary challenge 1. Our proposed approach leads to significant
improvements (approximately between 59% to 98% improvement,
and on average 91.24%). It can be seen that for very small PSTs,
the improvements are slightly low (between 60% to 70%); with

increasing the number of nodes the gains increase sharply. This is
natural, considering the significant difference (nearly O(N2)) in the
complexity (see Figure 8), between the two techniques.

Figure 13(b) presents a comparison of the aMHPnew algorithm
and the computeMHP-allPairs function, in answering the aux-
iliary challenge 2. We note that improvements due to our proposed
approach are between approximately 39% to 86% improvement (on
average 77.27%). Like before, it can be seen that for small PSTs
(≤ 500 nodes), the improvements are low (between 39% to 60%).
And with increasing number of nodes the gains increase to around
75-80%. Note that, compared to the analysis of auxiliary challenge 1,
the improvements here are slightly less. This is consistent with the
improvements in complexity (over the methods using the algorithm
of Agarwal et al.) achieved by iMHP (nearly a factor of O(N2))
and aMHPnew(a factor of O(N)).

6. Conclusion and Future Work
In this paper, we present new approaches to do May-Happen-in-
Parallel (MHP) analysis for task parallel languages (such as X10
and HJ) that support async-finish-atomic parallelism. We present
a fast incremental MHP algorithm to derive all the statements that
may run in parallel with an input statement. We also extend the MHP
algorithm of Agarwal et al. [1] (that answers if two given statements
may run in parallel) to improve the computational complexity (from

216

 20

 40

 60

 80

 100

 AVG 1000 2000 3000 4000 5000 6000 7000 8000 9000

%
Im

pr
ov

em
en

t
iM

H
P

V
s

co
m

pu
te

M
H

P-
al

lS
tm

ts

Number of nodes

(a) auxiliary challenge 1: iMHP Vs computeMHP-allStmts

 20

 40

 60

 80

 100

 AVG 1000 2000 3000 4000 5000 6000 7000 8000 9000

%
Im

pr
ov

em
en

t
A

M
H

Pn
ew

 V
s

co
m

pu
te

M
H

P-
al

lP
ai

rs

Number of nodes

(b) auxiliary challenge 2: aMHPnew Vs computeMHP-allPairs

Figure 13: Impact of the proposed techniques on PSTs with varying number of nodes

worst case quadratic to linear in program size), without compromis-
ing on the precision. We demonstrate the efficiency of our proposed
MHP analysis techniques empirically on (i) actual benchmarks and
(ii) a large representative set of automatically generated program-
structure-trees (PSTs). Considering the pivotal role played by MHP
analysis in many static and dynamic program optimizations/analyses,
results shown in this paper will also have a positive effect on the
speed and effectiveness of those optimizations/analyses.

Clocks in X10 [24] and Phasers in HJ [11] present newer chal-
lenges to compute MHP information and extending our proposed
incremental MHP algorithm to take into consideration clocks and
phasers is left as an interesting future work.

Acknowledgements
This work is partially supported by the New Faculty Seed Grant,
IIT Madras CSE/11-12/567/NFSC/NANV, DAE research grant
2012/36/54-BRNS/2943 and DST Fasttrack grant SB/TP/ETA-
166/2012.

References
[1] AGARWAL, S., BARIK, R., SARKAR, V., AND SHYAMASUNDAR, R.

2007. May-happen-in-parallel analysis of X10 programs. In Proceedings
of PPoPP. 183–193.

[2] ALBERT, E., FLORES-MONTOYA, A., GENAIM, S., AND MARTIN-
MARTIN, E. 2013. Termination and cost analysis of loops with concurrent
interleavings. In ATVA. 349–364.

[3] ALSTRUP, S., THORUP, M., GØRTZ, I. L., RAUHE, T., AND ZWICK,
U. 2014. Union-find with constant time deletions. ACM Transactions on
Algorithms, 6.

[4] BARIK, R. 2005. Efficient Computation of May-Happen-in-Parallel
Information for Concurrent Java Programs. In Proceedings of LCPC.
152–169.

[5] CHEN, C., HUO, W., AND FENG, X. 2012. Making it practical and
effective: fast and precise may-happen-in-parallel analysis. In Proceedings
of PACT. 469–470.

[6] CORMEN, T. T., LEISERSON, C. E., AND RIVEST, R. L. 1990. Intro-
duction to algorithms. MIT Press, Cambridge, MA, USA.

[7] DUESTERWALD, E. AND SOFFA, M. 1991. Concurrency analysis in the
presence of procedures using a data-flow framework. In Proceedings of
the symposium on Testing, analysis, and verification. ACM, 36–48.

[8] FLORES-MONTOYA, A., ALBERT, E., AND GENAIM, S. 2013. May-
Happen-in-Parallel Based Deadlock Analysis for Concurrent Objects. In
Proceedings of FORTE. 273–288.

[9] GUO, Y., BARIK, R., RAMAN, R., AND SARKAR, V. 2009. Work-first
and help-first scheduling policies for async-finish task parallelism. In
Proceedings of IPDPS. IEEE Computer Society, 1–12.

[10] GUPTA, S. AND NANDIVADA, V. K. 2015. IMSuite: A Benchmark
Suite for Simulating Distributed Algorithms. Journal of Parallel and
Distributed Computing 75, 0, 1 – 19.

[11] HABANERO. 2009. Habanero Java. http://habanero.rice.edu/hj.
[12] KAPLAN, H., SHAFRIR, N., AND TARJAN, R. E. 2002. Union-find

with deletions. In Proceedings of SODA. 19–28.
[13] KRINKE, J. 1998. Static slicing of threaded programs. In Proceedings

of PASTE. ACM, New York, NY, USA, 35–42.
[14] LEE, J. K. AND PALSBERG, J. 2010. Featherweight X10: a core

calculus for async-finish parallelism. In Proceedings of SAS. 25–36.
[15] LEE, J. K., PALSBERG, J., MAJUMDAR, R., AND HONG, H. 2012.

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism.
In Proceedings of SAS. 5–23.

[16] LIN, L. AND VERBRUGGE, C. 2004. A Practical MHP Information
Analysis for Concurrent Java Programs. In Proceedings of LCPC. 194–
208.

[17] MASTICOLA, S. P. AND RYDER, B. G. 1991. A model of Ada
programs for static deadlock detection in polynomial times. In workshop
on Parallel and distributed debugging. ACM, 97–107.

[18] MASTICOLA, S. P. AND RYDER, B. G. 1993. Non-concurrency
analysis. In Proceedings PPoPP. ACM, New York, NY, USA, 129–138.

[19] MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann.

[20] NANDIVADA, V. K., SHIRAKO, J., ZHAO, J., AND SARKAR, V. 2013.
A Transformation Framework for Optimizing Task-Parallel Programs.
ACM Trans. Program. Lang. Syst. 35, 1, 3:1–3:48.

[21] NAUMOVICH, G., AVRUIN, G. S., AND CLARKE, L. A. 1998. Data
Flow Analysis for Checking Properties of Concurrent Java Programs.
Tech. rep., Amherst, MA, USA.

[22] NAUMOVICH, G. AND AVRUNIN, G. S. 1998. A conservative data
flow algorithm for detecting all pairs of statements that may happen in
parallel. In Proceedings of FSE. 24–34.

[23] NAUMOVICH, G., AVRUNIN, G. S., AND CLARKE, L. A. 1999. An
efficient algorithm for computing MHP information for concurrent Java
programs. In Proceedings of ESEC/FSE. 338–354.

[24] SARASWAT, V., BARD, B., IGOR, P., TARDIEU, O., AND GROVE, D.
2012. X10 Language Specification Version 2.3. Tech. rep., IBM.

[25] SCHIEBER, B. AND VISHKIN, U. 1988. On finding lowest common
ancestors: simplification and parallelization. SIAM J. Comput. 17, 6,
1253–1262.

[26] TAYLOR, R. N. 1983. Complexity of analyzing the synchronization
structure of concurrent programs. Acta Informatica 19, 1, 57–84.

217

	Introduction
	Background
	Language
	May-Happen-in-Parallel Analysis

	Improvements to MHP Analysis
	List of Statements that May Run in Parallel With a Statement
	MHP Relation Between Two Statements
	Compact Conditional Vector Sets (CCS)
	MHP Relation for a Pair of Statements

	Complexity and Efficiency
	Discussion

	MHP for Multi-Place Programs
	Computing MHP(L1) for Multi-Place Programs
	Computing MHP(L1, L2) for Multi-Place Programs
	Compact Conditional Vector Sets for PE Analysis
	PE Analysis

	Multi-Place aMHPnew
	Complexity of MHP analyses for Multi-Place Programs

	Evaluation
	Evaluation on Real Benchmarks
	Evaluation on Synthetic Benchmarks
	PST Generator
	Impact of the Proposed Techniques on PSTs with Varying Amounts Parallelism
	Impact of the Proposed Techniques on PSTs with Varying Size

	Conclusion and Future Work

