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Abstract—Heterogeneous Information Networks (HINs) com-
prise nodes of different types inter-connected through diverse
semantic relationships. In many real-world applications, nodes
in information networks are often associated with additional
attributes, resulting in Attributed HINs (or AHINs). In this paper,
we study semi-supervised learning (SSL) on AHINs to classify
nodes based on their structure, node types and attributes, given
limited supervision. Recently, Graph Convolutional Networks
(GCNs) have achieved impressive results in several graph-based
SSL tasks. However, they operate on homogeneous networks,
while being completely agnostic to the semantics of typed nodes
and relationships in real-world HINs.

In this paper, we seek to bridge the gap between semantic-
rich HINs and the neighborhood aggregation paradigm of graph
neural networks, to generalize GCNs through metagraph seman-
tics. We propose a novel metagraph convolution operation to
extract features from local metagraph-structured neighborhoods,
thus capturing semantic higher-order relationships in AHINs.
Our proposed neural architecture Meta-GNN extracts features
of diverse semantics by utilizing multiple metagraphs, and
employs a novel metagraph-attention module to learn personal-
ized metagraph preferences for each node. Our semi-supervised
node classification experiments on multiple real-world AHIN
datasets indicate significant performance gains of 6% Micro-F1

on average over state-of-the-art AHIN baselines. Visualizations
on metagraph attention weights yield interpretable insights into
their relative task-specific importance.

I. INTRODUCTION

Graph-based semi-supervised learning (SSL) is an important
machine learning paradigm that aims to classify unlabeled
nodes in a graph, given a small subset of labeled nodes [1].
The key objective is to avoid the expensive cost of human data
labeling by leveraging more accessible unlabeled data. Graph-
based SSL is prevalent in various data mining applications
such as profiling users in social networks [2], [3], categorizing
publications in bibliographic networks [4] and modeling user
interests in recommender systems [5], [6].

Classical SSL techniques employ smoothness assumptions
to propagate labels through explicit graph-based regulariza-
tion [1] under the hypothesis that directly linked nodes share

labels (homophily). However, links in real-world networks
often go beyond similarity to indicate semantics such as
relationships between various objects [7]. Recent advances
in graph convolutional networks (GCNs) [8]–[10] jointly
consider graph structure and node attributes. Specifically,
GCNs [9] characterize a target node of interest through local
neighborhood aggregation of node attributes and have achieved
impressive gains in several SSL tasks. However, GCNs are
designed for homogeneous networks - which are representative
of singular type of nodes and relationships.

Many real-world applications manifest as Heterogeneous
Information Networks (HINs) containing nodes of multiple
types inter-connected in diverse semantic relationships. For
instance, bibliographic networks (such as DBLP) with author,
paper, and venue nodes, include co-authorships, co-citations,
publishing in the same venue, etc., as different semantic rela-
tionships. HINs often include node attributes, e.g., “users” in
Facebook have age, gender, location and employer attributes,
while “publications” in DBLP are described through their
text content. Although discrete attributes such as location and
publication venue may be considered as distinct node types,
complex numerical attributes and text content preclude such
type representations. To enrich the information content of
HINs with attributes, we consider Attributed Heterogeneous
Information Networks or AHINs [11].

Semi-supervised learning in AHINs is significantly more
challenging in comparison to both homogeneous networks and
HINs. For instance, to classify an author in DBLP, her co-
authors and published venues illustrate context nodes that both
provide relevant features. Yet, these context nodes possess di-
verse attributes and play different roles due to (a) diverse node
types such as venues versus co-authors or (b) varying structural
orientations amongst the same node type, such as cited versus
referenced publications. Thus, it is necessary to consider the
interplay of structure and attributes, in conjunction with HIN
semantics, to accurately extract relevant features from local
neighborhoods for classification.

Inspired by the recent success of GCNs, we aim to unify
the local neighborhood aggregation paradigm of Graph Neural
Networks with semantic-rich AHINs. We generalize graph
convolutions to AHINs through metagraphs. In HINs, meta-
paths and metagraphs are widely used to encode different
semantic relationships, with applications in various data min-
ing tasks [4], [12]. We propose metagraph convolutions to
aggregate features from local neighborhoods specified by the
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metagraph structure. We identify two key interesting insights
enabled by metagraph convolutions:
• Semantic High-order locality: Metagraphs specify se-

mantic relationships via certain sub-substructures, thus
providing a principled framework capturing semantic
higher-order locality (in contrast to immediate neighbors),
such as authors (target) connecting to other authors (con-
text) through coauthored papers.

• Precise semantic role: Metagraphs enable accurate se-
mantic role discrimination of local context nodes based
on their node types and structural connection patterns,
such as roles of co-authors (context) and publication
venues (context) in author classification.

HINs comprise multiple metagraphs expressing diverse se-
mantic relationships with varying task-specific relevance, e.g.,
metagraphs relating authors to venues (M1 in Fig. 1(a)) are
strongly indicative of their research areas, while co-authorship
relations (M3 in Fig. 1(a)) are more informative in identifying
research groups. The relevance of each metagraph may further
depend on the specific node under consideration. This poses
a new challenge of automatically learning personalized task-
specific metagraph preferences per node.

To this end, we introduce a novel metagraph-attention
module to learn personalized metagraph preferences. Attention
mechanisms have recently achieved great success in many
natural language processing tasks, such as machine transla-
tion [13], etc. The key objective of attentions is to learn a
function that focuses on the most relevant parts of the input,
to compute an aggregate representation. In contrast to the
usual application of attention at the granularity of nodes [10],
we apply attention at a higher abstraction level (metagraphs)
to enable dual benefits: (a) interpretable insights into their
discriminative power, and (b) computational efficiency in
comparison to node-level attention. We summarize our key
contributions below:
• We introduce a novel generalization of graph convolu-

tions to Attributed Heterogeneous Information Networks,
by utilizing metagraphs to define the local context or
receptive field around a target node of interest.

• We propose a novel neural architecture Meta-GNN that
employs multiple metagraph convolutional layers, along
with an attention mechanism to learn personalized meta-
graph preferences for each node.

• Our experiments on multiple real-world datasets demon-
strate the effectiveness of Meta-GNN in achieving state-
of-the-art semi-supervised classification performance.

II. RELATED WORK

Our work is related to graph-based SSL literature in both
homogeneous and heterogeneous information networks.

Graph-based SSL (Homogeneous): Semi-supervised
learning on graphs is a well-studied problem in recent years
with two broad classes of techniques: (a) explicit graph-based
regularization methods and (b) graph embedding methods.
Classical methods in the first category include variants of label

TABLE I. Comparison of Meta-GNN with existing on the
aspects of node attributes, node types and node labels

Aspect Attributes Types Labels

GCN [9], GAT [10] Yes No Yes
metapath2vec [23] No Metapath No
LP-metagraph [24] No Metagraph Yes
HCC [25], CLN [26] Partial Metapath Yes
Meta-GNN Yes Metagraph Yes

propagation [1] and manifold regularization [14]. A thorough
survey of classical SSL methods can be found at [15]. Graph
embedding methods are designed to learn unsupervised node
representations by predicting local graph neighborhoods [16]–
[18], followed by downstream supervised classification using
the learnt embeddings. Though these approaches are universal,
the embeddings are learnt independent of the underlying
learning task.

Recently, graph neural networks have been introduced
to solve graph classification [19] and semi-supervised node
classification tasks [8], [9], [20]–[22]. Our work is closely
related to GCN [9], which aggregates neighborhood features
with equal importance. GraphSAGE [21] generalizes GCN
to explore a large family of expressive aggregators, while
GAT [10] employs attention mechanisms to learn different
weights for context nodes via pairwise feature correlations.
However, all these techniques are applicable only on homoge-
neous networks by design. In contrast, we focus on AHINs,
where modeling heterogeneous semantics is crucial to learn
suitable neighborhood aggregation functions.

Graph-based SSL (Heterogeneous): Metapaths [7] and
metagraphs [27] encode HIN semantics to generalize label
propagation methods to HINs [24], [28]. metapath2vec [23]
and others [29], [30] learn unsupervised node representa-
tions by utilizing metapath-guided node similarity measures.
HCC [25] and Column Networks (CLN) [26] use metapaths
along with node attributes of the target type, for node classi-
fication (often called collective classification).

However, all these techniques are limited to modeling
semantic node proximity through metapaths or metagraphs,
and can at best use attributes of a single node type (such as
CLN), for node classification, i.e., existing methods cannot
incorporate the attributes of all node types in general AHINs
to learn prediction models. In contrast, Meta-GNN generalizes
graph convolutions by extracting local features from diverse
local neighborhoods defined by metagraphs.

We qualitatively compare Meta-GNN with representative
methods across all settings on three key distinct aspects of our
problem: (a) node attributes (b) node types (HIN semantics)
and (c) node labels (task supervision). Table. I compares Meta-
GNN with GCN (homogeneous graph CNN), metapath2vec
(HIN embedding), HCC, CLN (HIN metapath-based SSL)
and LP-metagraph (HIN metagraph-based SSL). Our proposed
model Meta-GNN captures HIN semantics through a novel
metagraph convolutional framework that leverages node at-
tributes for semi-supervised learning.
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III. PROBLEM FORMULATION

In this section, we introduce preliminary concepts and
formally define the problem of semi-supervised learning on
Attributed Heterogeneous Information Networks (AHINs).

Definition 1: An Attributed Heterogeneous Information
Network (AHIN) is a graph G = (V,E,X) with node type
mapping: l : V 7→ L where V = {v1, ..., vN} is the set of N
nodes, E is the set of links, L is the set of node types, and
X ∈ RN×D is the attribute matrix describing all nodes.

Since each node type may belong to a different feature
space, we concatenate the features of all types (with zero
padding) to obtain a joint feature space with D attributes. Now,
we introduce the concept of metagraphs in AHINs.

A metagraph is a subgraph pattern describing the rela-
tionship between a pair of target and context nodes, e.g.,
metagraph M3 (Fig. 1(a)) illustrates a co-author relationship
of a target node A with context node A2 through auxiliary
paper node P1. In contrast to existing metagraph definitions,
we explicitly specify the connecting auxiliary nodes since
they provide useful attributes for classification. In Fig. 1(a),
the node subscript gives the node index, e.g., P1 and P2

are two different nodes of type P . A metagraph M is a
subgraph comprising a designated target node tM , context
node cM and remaining auxiliary nodes BM . We formally
define metagraphs as follows:

Definition 2: A metagraph M with target node tM , context
node cM is defined as M = (VM , EM , tM , cM , BM ) with
node type mapping lM : VM 7→ L where VM is the set of
nodes with tM , cM ∈ VM , EM is the set of links and BM =
VM − {tM , cM} is the set of auxiliary nodes.

We define an instance Su of metagraph M with target node
u in G, as a subgraph induced by M with u as the target
node. Fig. 1(b) illustrates an author node a characterized via
different instances of metagraph M1 in G with a as target.
The formal definition of a metagraph instance is given by:

Definition 3: A metagraph instance Su = (VS , ES) of
metagraph M with target node u is a subgraph of G where
VS ⊆ V and ES ⊆ E, such that there exists a bijective node
mapping ψS : VS 7→ VM satisfying conditions on (i) target
node: u ∈ VS , ψS(u) = tM (ii) node types: ∀x ∈ VS , l(x) =
lM (ψS(x)) and (iii) edge set: ∀x, y ∈ VS , (x, y) ∈ ES if and
only if (ψS(x), ψS(y)) ∈ EM .

AHINs naturally contains multiple metagraphs to com-
pletely specify the associated semantics. In this paper (similar
to most works in HINs), we assume a set of metagraphs
as input, specified by domain experts familiar with the HIN
schema, to capture the relationships between different node
types. We now formally define the problem of semi-supervised
node classification on AHINs below as:

Definition 4: Semi-supervised node classification in
AHINs. Given an AHIN G = (V,E,X) with labeled nodes
YL, learn a model M to classify the nodes into K classes.

IV. METAGRAPH CONVOLUTIONAL NEURAL NETWORK

In this section, we review graph convolution networks [9]
to present necessary background for metagraph convolutions.

P1 P2

A2V3 P3 A3

P1 A1 V2 P1

A PA
M1 M3 M4

V
M5

P1 P2

A
M2

P2

(a) Metagraphs in DBLP

a
p1

p2

p3

p4

v1

a2

v2

p5

p6

a1

p7

p8

(b) Example graph

Fig. 1: (a) Metagraphs (Author (A), Paper (P) and Venue (V))
with target and context nodes marked in red and blue respectively
(b) Illustrating instances of M1 for target a. Lower-case letters
(e.g., a) denote nodes in G while upper-case letters (e.g., A)
correspond to node types.

A. Graph Convolutional Layer
Graph Convolutional Networks define receptive fields to

extract features from local regions of interest around a target
node, e.g., GCN [9] defines receptive fields as the set of
immediate first-order neighbors in G. A single GCN layer
operates on the adjacency matrix A (representing G) and
the attribute matrix X to extract and aggregate first-order
neighborhood features by assigning equal importance to each
neighboring node. The operation of a GCN layer is given as:

H = σ(ÂXW ) Â = D−1/2AD−1/2 + IN

where X is the input attribute matrix, W ∈ RD×F is the
weight transformation matrix, Â is a normalized adjacency
matrix, and σ(·) is a non-linear activation.

B. Metagraphs for Convolution
The heterogeneous neighborhood around a target node of

interest u is generalized beyond immediate neighbors through
metagraph-based receptive fields.

Heterogeneous Receptive Field: We define the heteroge-
neous receptive field around target node u w.r.t metagraph
M as the set of all instances of M with u as the target.
Metagraphs enable explicit description of multiple semantic
relationships of a target node u in its local neighborhood.
Here, the metagraph M serves as the structure or template that
spans the neighborhood around u to define the M -receptive
field through its different instances. For example, the receptive
field around an author node a is characterized via different
instances of metagraph M1 in G with a as target (illustrated
in Fig. 1(b)). We define an M -receptive field as:

Definition 5: The M -receptive field around target node u
is the set of all instances of metagraph M in G with target
node u, denoted by IMu .
In other words, heterogeneous M -receptive fields define se-
mantic high-order neighbors, as specified by metagraph struc-
tures. In contrast to GCN [9] which uses homogeneous node
sets as receptive fields, M -receptive fields contain nodes of
different types in each heterogeneous metagraph instance. This
poses new challenges since the nodes in each instance possess
distinct semantics, which precludes the application of a naive
type-agnostic aggregation.

Thus, it is necessary to clearly delineate the roles of
different nodes in each instance of M , to accurately capture the
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TABLE II. Notations

Symbol Dimensions Description

N Scalar Number of nodes
D Scalar Number of input features
F Scalar Number of filters per metagraph
KM Scalar Number of unique semantic roles in

metagraph M
U Scalar Number of metagraphs per layer
X N ×D Input Feature Matrix
Hj

l N × F Activations at Conv unit j (meta-
graph Mj) in layer l

AM KM ×N ×N Adjacency tensor for metagraph M
WM (KM+1)×D×F Weight tensor for metagraph M

semantics of various node types. Furthermore, it is critical to
note that even two nodes of the same type in a metagraph may
not be equivalent, e.g., the roles of nodes P1 and P2 relative
to target A in metagraph M2 (Fig. 1(a)), are quite different,
despite being of the same type. To address this challenge, we
define the concept of semantic roles to distinguish the roles
of different nodes in a metagraph based on their types and
structural orientations.

Semantic roles: The semantic roles of context and auxiliary
nodes in metagraph M are determined by the concept of
automorphic equivalence, i.e., two nodes u and v (other than
target tM ) are automorphically equivalent if exchanging the
two nodes through permutations does not affect the relation-
ships among all nodes in the graph. For instance, in Fig. 1(a),
nodes P1 and P2 share the same semantic roles in M1, while
the roles of P1 and P2 in M2 are distinct. We formally define
the concept of semantic roles as:

Definition 6: Given metagraph M = (VM , EM , tM , cM ),
nodes u, v ∈ VM − {tM} share semantic roles w.r.t. target
tM if ∃ an automorphic mapping, ΩM : VM 7→ VM such that
ΩM (u) = v,ΩM (v) = u and ΩM (x) = x ∀x ∈ VM − {u, v}.

The semantic roles of various nodes w.r.t. target node tM
in metagraph M can be easily deduced from their structure
and types. Hence, we simply define a role mapping function
φM : VM −{tM} 7→ {1, . . . ,KM} to return the semantic role
w.r.t target tM in metagraph M , where KM is the number
of unique semantic roles. Since roles are metagraph-specific,
KM is at most 1+|BM |. Next, we define a compact tensor to
represent node connectivity in G through metagraph M .

Metagraph-adjacency Tensor: AM is a tensor of KM
matrices denoting the occurrences of nodes in each unique
semantic role k over all instances of M in G. AM

kij is the
number of instances with vj in role k and vi as target:

AM
kij =

∑
Svi
∈IMvi ,vj∈VS−{vi}

I
(
φM (ψS(vj)) = k

)

where I(·) is the indicator function. We define a diagonal
matrix DM ∈ RN×N for each metagraph M where each entry
DM

ii stores the number of metagraph instances with node i as
target, i.e., DM

ii = |IMvi
| = Li ∀1 ≤ i ≤ N .

C. Metagraph-based Convolution
In this section, we define metagraph convolutions by utiliz-

ing the concepts of M -receptive fields and semantic roles to
extract local features around a target node of a specific type.
For ease of explanation, we first consider a single metagraph
M with target type T = l(tM ) applied at a target node vi ∈ V
with l(vi) = T . We denote by F , the number of filters per
metagraph. Now, we introduce a metagraph filter operating on
a single feature (D = 1).

Metagraph Filter: A metagraph filter (on M ) is defined by
weight w0 for target tM and weight vector w ∈ RKM for the
KM roles, i.e., each weight in w differentiates the semantic
roles of context and auxiliary nodes in M .

Metagraph Convolutional Unit: The features of all nodes
connected through metagraph M are weighted according to
their semantic roles and normalized by the diagonal matrix
which reduces the bias introduced by highly connected nodes,
resulting in the following expression:

hM (vi) = σ

(
w0xi +

1

DM
ii

N∑
j=1

KM∑
k=1

wkAM
kijxj

)
(1)

where xi and xj refer to the features of nodes vi and vj
respectively, hM (vi) is the output of convolution at node vi and
σ(·) is an activation function, such as ReLU(·) = max(0, ·). Thus,
the metagraph convolutional unit for metagraph M generates a new
node representation by assigning different weights according to the
semantic roles of context and auxiliary nodes in each instance,
followed by a mean aggregation over multiple instances.

We extend Eqn. 1 for input matrix X ∈ RN×D with N nodes, D
features and F filters per metagraph, to get:

HM = σ

(
XWM

0 + (DM )−1
KM∑
k=1

AM
k XW

M
k

)
(2)

where WM is the weight tensor for metagraph M and HM

is the output of the metagraph convolutional unit.

D. Semantic Metagraph Fusion
The node representations computed by metagraph convolu-

tions across multiple metagraphs, must be suitably weighted
according to the underlying learning task. An immediate
solution is to use a set of U linear weights to combine the
outputs of different metagraphs. However, this approach fails
to learn personalized metagraph preferences.

We are inspired by recent advances in attention mecha-
nisms [13], that enable focusing on the most relevant inputs,
while learning an aggregate representation. We introduce a
metagraph-attention module to semantically fuse the represen-
tations learnt from individual metagraphs by attending over the
outputs of different metagraph convolutional units.

Metagraph-Attention: We use a scaled dot-product atten-
tion function to compute the output at node vi, as given by:

h(vi) =

U∑
k=1

αk,ih
k(vi) αk,i =

exp(ek,i)
U∑

j=1

exp(ej,i)

(3)

where ek,i = a(hk(vi), z) = zThk(vi)√
|z|

and αk,i are normalized

attentional co-efficients that indicate the importance of meta-
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Fig. 2: Illustration of the deep neural architecture of Meta-GNN for metagraphs in Fig. 1(a)

graph Mk to node vi, hk(vi) is the output of convolutional
unit for Mk (Eqn. 2), and z is an attention vector shared
across all metagraphs. z can be viewed as a representation
of a fixed semantic query “which is the most informative
metagraph” compared against the features extracted from each
metagraph. A higher value of αk,i indicates greater importance
of metagraph MK for node vi. Note that the metagraph
attentional coefficients vary across nodes, thus learning per-
sonalized metagraph preferences.

E. Meta-GNN Architecture
Meta-GNN comprises multiple stacked convolutional layers

followed by a fully connected layer. Each convolutional layer
has U metagraph convolutional units, each corresponding to a
metagraph. Fig. 2 illustrates the architecture of Meta-GNN for
the sample metagraphs in Fig. 1(a). In each layer, the output
of all convolutional units are fused via metagraph-attention,
to feed as input to the next layer, i.e., the output at layer l
denoted by Hl, is computed by Eqn. 3 where the input to the
first layer is the attribute matrix H0 = X .

For a K-class node classification setting, the output layer
has K units and applies the softmax activation function to
obtain predictions Z ∈ RN×K . We use the cross-entropy loss
function for optimization, as described below:

L = −
∑

l∈Y
L

K∑
k=1

Ylk logZlk (4)

where Y
L

is the set of node indices that have labels. For multi-
label classification, we instead use K sigmoid units and apply
the binary cross-entropy loss function.

F. Complexity analysis
We analyze the complexity of Meta-GNN in two parts:
Pre-Computation of AM : The Metagraph-Adjacency Ten-

sor, which is independent of the architecture, is pre-computed
for all metagraphs. In this paper, we focus on metagraphs
of up to 3 nodes. The cost of computing AM for triangles
is O(|E|1.5) [31]. For non-triangle 3-node metagraphs, each
pair of neighbors can be examined for all nodes, giving
a complexity of Θ(

∑
j d

2
j ) (dj is the degree of node vj),

with superior efficient algorithms in practice [32]. For larger
metagraphs, subgraph matching can be used with approximate
sampling strategies for practical efficiency.

Dataset |V | |E| |L| Classes

DBLP-A 11,170 24,846 3 4
DBLP-P 35,770 131,636 3 10
Movie 10,441 99,509 4 6

TABLE III. Statistics of three AHIN datasets

Model Training: The complexity of a single layer is a
function of the number of metagraphs U (typically < 5)
and density of each AM , given by O(

∑U
i=1 |AMi |DF ). In

practice, the number of roles KM is at most 3 and the
role-specific matrices are sparser than the original adjacency
matrix, giving an average-case complexity O(U |E|DF ). Thus,
we observe linear scaling with U in comparison to GCN which
has O(|E|DF ). An efficient implementation of Meta-GNN in
Tensorflow [33] is publicly available1.

V. EXPERIMENTS

We conduct experiments on multiple real-world graph
datasets to evaluate the performance of Meta-GNN on semi-
supervised node classification in AHINs.

A. Datasets

We conduct experiments on three real-world datasets, whose
statistics are shown in Table. III:

• DBLP-A: This is a bibliographic network composed of
3 node types: author (A), paper (P ) and venue (V ),
connected by three link types: P P , A-P and P -V . We
use a subset of DBLP [7] with text attributes of papers
to classify authors based on their research areas.

• DBLP-P: This dataset has the same schema as DBLP-
A, but the task is to classify research papers into 10
categories, which are obtained from Cora [34].

• Movie: We use MovieLens [35] to create an AHIN
with 4 node types: movie (M ), user (U ), actor (A)
and tag (T ) linked by 4 types: U -M , A-M , U -T and
M -T , with attributes available for actors and movies.
The classification task is movie genre prediction, which
corresponds to a multi-label prediction scenario.

1https://github.com/aravindsankar28/Meta-GNN
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TABLE IV. Semi-supervised node classification results (Micro-F1 and Macro-F1) on DBLP-A, DBLP-P and Movie. - indicates
not applicable, x indicates does not scale.

Method DBLP-A DBLP-P Movie

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DCNN 69.68 69.20 x x 49.91 46.72
GCN 81.34 81.29 71.30 53.14 55.67 53.85
Graph-CNN 72.89 73.04 65.58 52.85 52.07 49.53
GAT 82.96 81.27 71.98 60.65 58.62 58.06

LP-Metapath 82.77 82.86 62.15 52.41 - -
LP-Metagraph 83.03 83.11 62.97 57.08 - -
HCC 61.62 59.75 61.56 58.12 53.38 26.25
CLN 80.99 80.94 66.71 52.19 57.11 47.71
metapath2vec 83.37 83.43 70.10 61.89 48.61 48.58
metapath2vec + Attributes 83.37 83.43 71.22 64.53 60.00 60.00

Meta-GNN 89.12 87.38 74.58 66.76 64.72 62.34

B. Baselines:

In our experiments, we compare against 10 algorithms in
total, split across two categories. Since Meta-GNN general-
izes homogeneous Graph CNNs to AHINs, we first compare
against four recent graph CNN methods:
• DCNN [8]: Diffusion convolutions through weighted

feature aggregation on depth-wise neighborhoods.
• GCN [9]: Graph convolutions as layer-wise linear aggre-

gation of the first-order neighborhood.
• Graph-CNN [20]: Graph convolution filters as polyno-

mials of functions of the graph adjacency matrix.
• GAT [10]: Graph Attention Network which utilizes at-

tentional neighborhood aggregation functions.
All Graph CNNs are provided one-hot encodings of node types
as additional attributes to make a fair comparison. Next, we
compare against multiple strong AHIN baselines:
• LP-Metapath [28]: Metapath-specific Laplacians for

joint label propagation and metapath weight learning.
• LP-Metagraph [24]: SSL algorithm on HINs based on

an ensemble of metagraph guided random walks.
• Column Network (CLN) [26]: Deep neural network for

node classification in multi-relational graphs.
• HCC [25]: Iterative collective classification method that

exploits dependencies based on multiple metapaths.
• metapath2vec [23]: Skip-gram to learn node embeddings

in HINs using metapath-based random walks, which feed
into a logistic regression classifier.

• metapath2vec + Attributes [23]: We extend metap-
ath2vec by concatenating the node embeddings with
target node attributes before classification.

C. Experimental setup:
We sample 10% labeled nodes for training, 10% for vali-

dation and rest for testing. We repeat this process 10 times
and report the mean performance in terms of both Micro-
F1 and Macro-F1. We train a 3-layer Meta-GNN with two
metagraph convolutional layers (hidden layer sizes of 64 and
32) with ReLU activations followed by a fully connected
layer. We apply L2 regularization with λ = 10−5 for the
weight matrices and use dropout of 0.5 in each layer. We train

our model for a maximum of 200 epochs using Adam [36]
with windowed early stopping (10 epochs) on the validation
set. For node types that do not have attributes, we use 1-
hot encoded inputs. For Meta-GNN, we use all relevant 3-
node metagraphs that indicate semantic closeness based on the
graph schema. We also ignore metagraphs with low occurrence
frequency based on empirical thresholds. We provide details
of these metagraphs online2. Similarly, we provide all relevant
metapaths and metagraphs as input for the remaining AHIN
baselines. Note that LP-Metapath and LP-Metagraph are not
applicable for multi-label classification.

D. Experimental results:
From Table. IV, we observe relative gains of 7% and 4%

(Micro-F1) for Meta-GNN over other graph CNN models
while gaining 6% and 4% overall in DBLP-A and DBLP-P
respectively. Since venues are the most discriminative features
in DBLP-A, even metagraph-based label-propagation methods
do quite well. In contrast, the attributes of papers and their
citations/references are more informative in DBLP-P, hence
GCN, GAT and attributed-augmented metapath2vec perform
better. In DBLP-P, DCNN does not scale due to O(N2) space
complexity. In Movie, Meta-GNN performs the best with 10%
gain in Micro-F1 over graph CNN models, while improv-
ing 8% overall. Metapath2vec + Attributes is the strongest
baseline, combining unsupervised representation learning on
HINs with node attributes to learn a downstream classifier,
while GAT is strongest graph CNN method as expected. Meta-
GNN achieves significant performance improvements on all
datasets, which illustrates the benefits of jointly modeling
HIN semantics and attributes in an end-to-end framework, for
achieving state-of-the-art performance.

E. Ablation Study
In this section, we conduct an ablation study to examine

the relative importance of various key components (or aspects)
involved in the design of Meta-GNN.
• Node Attributes: To analyze the benefits of using node

attributes in AHINs, we instead use one-hot encoded
vectors for each node (indicating their identity).

2https://sites.google.com/site/metagnn/
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TABLE V. Ablation study analyzing impact of node attributes,
semantic roles and metagraph attention

Method DBLP-A DBLP-P Movie

Mic-
F1

Mac-
F1

Mic-
F1

Mac-
F1

Mic-
F1

Mac-
F1

(1) Default 89.12 87.38 74.58 66.76 64.72 62.34
(2) No Attributes 86.24 83.93 66.39 58.51 55.11 51.28
(3) No semantic roles 87.81 85.75 72.41 64.49 62.09 60.42
(4) No Attention 86.44 86.49 73.86 65.61 62.41 60.64

We observe noticeable performance drops on DBLP-
P and Movie datasets demonstrating the importance
of attributes towards achieving state-of-the-art perfor-
mance. Note that this variant consistently outperforms
attribute-agnostic baselines (LP-Metapath, LP-Metagraph
and metapath2vec), which demonstrates the capability
of Meta-GNN in capturing complex structural patterns
despite the absence of node attributes.

• Semantic Roles: We examine the choice of defining
explicit semantic roles for metagraph convolutions. We
replace the metagraph-adjacency tensor of KM roles
with a single role-agnostic matrix merely indicating the
existence of different nodes in a metagraph, while using
the same set of metagraphs for consistency.
We observe 2-3% reduction in performance across all
datasets in the absence of semantic roles, thus validating
the design choice of explicit role differentiation.

• Metagraph-Attention: To investigate the power of the
metagraph-attention module in learning personalized
metagraph preferences, we replace attention with a simple
weighted combination of metagraphs.
The removal of metagraph attention leads to a 2% per-
formance drop on average, illustrating the benefits of
learning personalized metagraph preferences.

F. Qualitative Analysis
In this section, we analyze the attention weights learned by

Meta-GNN. Let us consider the research paper classification
task in DBLP-P. To illustrate, we use 4 metagraphs (depicted
in Fig. 3(a)) to represent different ways to relate a paper node
with shared authors and venues (M1 and M2), references
(M3) and citations (M4). We use a two-layer network for
training, and report the average metagraph attention weights
(percentages) assigned to different paper nodes. We remove
each metagraph one at a time and re-train the model to observe
the drop in performance. Fig. 3(b) depicts the attention weight
of each metagraph along with the relative decrease in Macro-
F1 score on removing that particular metagraph.

Overall, the average attention for a metagraph is positively
correlated with the decrease in performance on removing the
metagraph, i.e., our model assigns high attention weights for
metagraphs that are crucial for good discrimination. From
Fig. 3(b), we observe that metagraphs M2 and M3 have
significantly larger weights, which is fairly intuitive since the
references and venues of a paper are more strongly indicative
of its research area/category in comparison to its authors or

citations. Thus, the learned attention weights may be used to
filter out low-weight metagraphs in practice.

P
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P2

M1

P

V1

P2

M2

P

P1

M4

P

P1

M3

(a) Sample metagraphs
in DBLP-P dataset
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Fig. 3: Qualitative analysis of metagraph attention weights.
Relative changes in Macro-F1 on metagraph removal are shown
alongside attention weights. Higher weights are learnt for meta-
graphs whose removal leads to greater performance drop.
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Fig. 4: Efficiency comparison of graph CNNs across datasets.
Shaded region denotes pre-computation time of Meta-GNN.
Upper: running time per epoch. Lower: total running time.

G. Computational Efficiency

We report running times on an Intel(R) Xeon(R) CPU
E5-2699 v4 2.20 GHz system with 8 cores and 64 GB
memory. We use CPU for comparison since many baseline
implementations do not fit in GPU memory. We compare
Meta-GNN with four neural methods, GCN, DCNN, Graph-
CNN and CLN on all three datasets, as shown in Fig. 4.

Fig. 4(a) illustrates the training time per epoch of each
model. We find that Meta-GNN is quite efficient in comparison
to existing Graph CNNs and comes second only to GCN,
which is expected since the complexity scales linearly with the
number of metagraphs (Sec. IV-F). Meta-GNN is also faster
than GAT, due to its application of metagraph-level attention
instead of neighbor-level attention used in GAT.

We also compare the total running time of different mod-
els till convergence (Fig. 4(b)). We observe that Meta-GNN
converges much faster than other graph CNN methods owing
to its effective use of HIN semantics. Note that the running
time of our model includes the cost of pre-computation.
Although the pre-computation cost is a noticeable (but not
substantial) portion of the total time, Meta-GNN is reasonably
close to GCN and significantly faster than GAT as its rapid
convergence trades off the cost of pre-computation.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we study semi-supervised learning on At-
tributed Heterogeneous Information Networks. We introduce
a novel metagraph convolution operation to model high-order
locality and distinguish semantic roles of nodes in local het-
erogeneous neighborhoods. We propose a novel neural archi-
tecture Meta-GNN that employs multiple convolutional layers,
each augmented with an attention module to learn personalized
metagraph preferences for each node. Experimental results on
multiple real-world datasets demonstrate significant gains over
several state-of-the-art baselines.

We find several interesting and concrete directions for future
work. A direct motif-based extension to operate on homoge-
neous networks, yields encouraging results [37]. Firstly, Our
framework can be readily generalized beyond GCN to incor-
porate expressive neighborhood aggregation functions, such
as pooling [21] and attentional [10] aggregations. Secondly,
Neighborhood sampling [21] strategies can facilitate scaling
of Meta-GNN to very large graphs. Finally, we also plan to
examine the effect of larger metagraphs, especially in domains
with more complex heterogeneous interactions.
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