
Discovering Maximal Motif Cliques in Large

Heterogeneous Information Networks

Jiafeng Hu† Reynold Cheng† Kevin Chen-Chuan Chang‡ Aravind Sankar‡ Yixiang Fang†∗ Brian Y.H. Lam§

†Department of Computer Science, The University of Hong Kong, Hong Kong SAR, China
‡Department of Computer Science, University of Illinois at Urbana-Champaign, US

§Metabolic Research Laboratories, University of Cambridge, UK
†{jhu, ckcheng, yxfang}@cs.hku.hk; ‡{kcchang, asankar3}@illinois.edu; § yhbl2@cam.ac.uk

Abstract—We study the discovery of cliques (or “complete”
subgraphs) in heterogeneous information networks (HINs). Ex-
isting clique-finding solutions often ignore the rich semantics
of HINs. We propose motif clique, or m-clique, which redefines
subgraph completeness with respect to a given motif. A motif,
essentially a small subgraph pattern, is a fundamental building
block of an HIN. The m-clique concept is general and allows
us to analyse “complete” subgraphs in an HIN with respect to
desired high-order connection patterns. We further investigate
the maximal m-clique enumeration problem (MMCE), which
finds all maximal m-cliques not contained in any other m-cliques.
Because MMCE is NP-hard, developing an accurate and efficient
solution for MMCE is not straightforward. We thus present the
META algorithm, which employs advanced pruning strategies to
effectively reduce the search space. We also design fast techniques
to avoid generating duplicated maximal m-clique instances. Our
extensive experiments on large real and synthetic HINs show that
META is highly effective and efficient.

I. INTRODUCTION

Heterogeneous information networks (HINs), such as bib-

liographical databases, co-purchasing graphs, and biological

networks, have received a lot of interest from research and

industry communities [20], [24], [30]. Nodes of HINs are

associated with labels, allowing them to capture more so-

phisticated or “high-order” semantics than unlabelled graphs.

In Fig. 1a, for example, a bibliographical graph G consists

of three kinds of nodes, namely Author (A), Paper (P), and

Venue (V). The rich information contained in an HIN enables

important analysis tasks, including similarity search [33], [36],

clustering [37], and classification [20].

Cliques. In this paper, we study the problem of finding cliques

from an HIN. By definition, a clique is a complete subgraph,

i.e., all nodes in the clique are adjacent to each other. Thus,

a clique contains nodes that are closely related (e.g., a clique

in a social network can reveal users who are close friends).

A maximal clique is a clique that is not a subgraph of any

larger clique. For example, in G (Fig. 1a), one of its maximal

cliques is G2 (Fig. 1e). The problem of discovering all the

maximal cliques, called maximal clique enumeration (MCE),

has been well studied (e.g., [1], [9], [17], [39]). Cliques have

been extensively used in social community detection [16], hier-

∗ Yixiang Fang is the corresponding author.

�

�

�
�

�

�

�

�

��

��

�� �	

�

��

���
(a) Graph G

�� �

(b) Schema

�
�

�

�� ��

��

(c) Motif M

�

�
�

�

�

��

��

��

�

��

(d) maximal m-clique G1

�

� �
�

��

�

(e) maximal m-clique G2

Fig. 1: Illustrating m-cliques for a bibliographical network (A:
Author, P: Paper, V: Venue).

archy detection through email networks [10], financial network

analysis [4], and co-expressed gene group detection [29].

Cliques for HINs. Our main goal is to investigate the notion

of a clique for an HIN, which contains labelled nodes. Why

is this an issue? Let us consider the bibliographical network

G in Fig. 1a again. Suppose that we want to find out co-

authors who exhibit a close collaboration relationship. Can

we get this information from a clique of G? Unfortunately,

this is not possible, because an HIN is often associated with

a schema [36], which serves as a template for a graph, and

tells how many types of nodes there are in the graph and

where the possible edges exist. Fig. 1b shows the schema

of G, which depicts the connections allowed between nodes

with labels “A”, “P”, and “V”. Because no edges between

any two “A” nodes are allowed, and a clique is a complete

subgraph, there does not exist any clique that has two or more

“A” nodes. Hence, we cannot find any clique that contains

two or more co-authors from Fig. 1a. Traditional cliques (e.g.,

Fig. 1e) simply cannot capture the relationships among two

or more co-authors. We believe that the sense of a clique in

an HIN is still important. In the above example, we may wish

to find the “clique” of co-authors who collaborate on every

paper. However, the notion of “complete subgraph” needs to

be changed, because not every pair of nodes can be connected

in an HIN (e.g., an author cannot be linked to another author).

How should we rethink the notion of cliques for HINs, whose

nodes are labelled and edges are structured by schemas?

Motifs. To address the above question, we incorporate motifs

746

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00072

747

an algorithm for MCE, which forms the basis of our solutions.

In Section V, we present the basic solution META-Basic. We

study advanced pruning strategies for MMCE in Sections VI,

VII and VIII, respectively. Section IX reports experimental

results. We conclude in Section X.

II. RELATED WORK

Maximal clique enumeration (MCE), which finds maximal

cliques (or maximal subgraphs whose nodes are adjacent

to each other) from unlabelled graphs, has been extensively

studied [1], [9], [17], [39]. Researchers have also examined

bi-cliques (for bi-partite graphs) [42] and k-partite cliques (for

k-partite graphs) [25]. In fact, these cliques are special cases

of the m-clique (Section III). In this paper, we propose motif-

based cliques for HINs, which consider both structure and

label information of HINs.

Because MCE is NP-hard [23], researchers have devel-

oped pruning strategies to reduce the search space and time

costs [6], [8], [17]. Most of these approaches were based on

the classical BK algorithm [6], which uses backtracking to

explore the search space effectively. Our META algorithm is

also inspired by BK. However, adapting BK to solve MMCE

is not trivial. This is because we have to incorporate motifs

in the m-clique discovery process, and this makes the solution

more sophisticated. We will discuss the main challenges of

extending BK in detail in Section IV.

Motifs, or small patterns, are fundamental building blocks

for large networks [27], [31]. It has been studied in vari-

ous domains, such as neuroscience [34], biology [40], and

social networks [5], [31]. Recently, several important motif-

related problems have been examined. For instance, Gurukar

et al. [14] studied the mining of communication motifs from

dynamic interaction networks. They developed COMMIT, a

technique that converts a dynamic network into a database of

sequences, in order to discover communication motifs. In [2],

[21], [41], the problem of motif-aware (or higher-order) graph

clustering was addressed. Motif conductance, a generalization

of the conductance metric for motifs, is employed in the

graph clustering process. In [19], [28], [35], the problem of

counting or estimating the frequency of motifs was addressed.

We are not aware of any work that incorporates motifs in the

clique detection problem. We propose the m-clique, and design

strategies to retrieve them efficiently from a large HIN.

III. THE MAXIMAL M-CLIQUE ENUMERATION PROBLEM

We model a Heterogeneous Information Network (HIN) as

an undirected and labelled graph G = (VG, EG, LG,ΣG)
where VG is the set of nodes, EG ⊆ VG × VG is the set

of edges, ΣG is the set of labels, and LG is a labelling

function that assigns each node v ∈ VG a single label in

ΣG (denoted by LG(v))
1. We use G[U] = (U,E[U], LG,ΣG)

to denote the subgraph of G induced by node set U ⊆ VG,

where E[U] = {(u, v)|u, v ∈ U, (u, v) ∈ EG}. Let NG(v)
be the set of neighbors of v ∈ VG in G. For ease of

1In this paper, we focus on undirected HINs for simplicity. Our techniques
can be readily extended to handle edge-labeled and directed HINs.

presentation, we use “graph” to refer to an HIN. As illustrated

in Section I, the schema of an HIN expresses all allowable

links between node labels (e.g., Fig. 1b). Further, we define a

motif M = (VM , EM , LM , ΣM) to be any small connected

HIN. Given a graph G, a valid motif for G should follow

G’s schema, i.e., 1) only contains node labels defined by the

schema; and 2) only contains edges between node labels that

are allowed by the schema. Typically, M is given by users

(e.g., a “triangle” in Fig. 1c). The particular motif used is

application specific. We have illustrated the use of motifs in

bibliographic and social networks (Sec I), and we will also

discuss a few more motifs used in the case studies (Sec IX).

In this paper, we generalize the definition of cliques for

motif-based analysis on HINs. Before describing our m-clique

model, let us review the definition of subgraph isomorphism.

Definition 3.1 (Subgraph Isomorphism [7]): A motif M is

subgraph isomorphic to a graph G if there exists an injective

mapping φ: VM → VG, s.t., ∀u ∈ VM , LM (u) = LG(φ(u))
and ∀u, v ∈ VM , if (u, v) ∈ EM , then (φ(u), φ(v)) ∈ EG,

where φ(u) is the node to which u is mapped.

Clearly, M is subgraph isomorphic to G iff M is isomorphic

to a subgraph (not necessarily induced) of G. We call an

injective mapping from nodes in M to nodes in G a subgraph

isomorphic embedding of M in G.

Next, we propose a preliminary concept called “label-

matched node set”. Intuitively, it is a set of nodes such that

these nodes have the same labels with the given motif. For

example, for the graph G in Fig. 1a and the motif M in Fig. 1c,

every 3-node set with labels {“A”, “P”, “P”}, e.g., {v1, v3, v5}
and {v6, v3, v5}, is a label-matched node set of M in G.

Definition 3.2 (Label-matched Node Set): Given a graph G
and a motif M , a node set H ⊆ VG is label-matched with M if

H and M have the same number of nodes (i.e., |H| = |VM |),
and ∃ bijection φ : H → VM , such that ∀u ∈ H , LG(u) =
LM (φ(u)). We call H a label-matched node set of M in G.

We now present formal definitions of m-clique and maximal

m-clique.

Definition 3.3 (Motif Clique): Given a graph G and a motif

M , a motif clique (m-clique for short) of M in G is an induced

subgraph G′ of G, such that G′ and M have the same set of

labels, at least one label-matched node set of M is contained

in G′ and for each label-matched node set H in G′, M is

subgraph isomorphic to G′[H] (the induced subgraph).

Definition 3.4 (Maximal m-clique): An m-clique is a maxi-

mal m-clique if it is not contained in any other m-clique.

Problem Statement. Given a graph G and a motif M , we

study the problem of maximal m-clique enumeration (MMCE)

which efficiently extracts all maximal m-cliques of M in G.

Example 3.1: For the graph G in Fig. 1a and the motif M in

Fig. 1c, there are two maximal m-cliques, as shown in Fig.s 1d

(G1) and 1e (G2). For G1, it contains three label-matched

node sets: {{v1, v3, v5}, {v2, v3, v5}, {v6, v3, v5}}. We can

observe that M is subgraph isomorphic to all subgraphs of

G1 induced by these label-matched sets. For G2, VG2
is a

label-matched node set and M is subgraph isomorphic to G2.

748

TABLE I: Notations

Notation Description

M and G Motif and data graph

VG and EG Node set and edge set of G

VM and EM Node set and edge set of M

G[U] Subgraph of G induced by node set U

Lg(v) Label of v in g

Ng(v) Neighbors of v in g

|U | Number of nodes in node set U

DU
v Nodes in U dominated by v

n Number of nodes in G

Generalization. MMCE is a generalization of the well-studied

maximal clique enumeration (MCE) problem defined for un-

labelled graphs and the maximal k-partite clique problem

defined for k-partite graphs. Here, we summarize how MMCE

generalizes them in detail:

• When G is an unlabelled graph, the MCE problem [1]

searches for all maximal cliques. This is equivalent to MMCE

for G, by setting M to be a single edge connecting two

unlabelled nodes.

• When G is a k-partite graph (k ≥ 2), the maximal k-partite

clique problem [25] asks for all maximal k-partite cliques of G
(i.e., maximal complete k-partite subgraphs of G). Particularly,

when k = 2, it is the maximal bi-clique problem [42]. This

is the same as MMCE for G, where M is a complete graph

containing k nodes with k different labels.

Neither MCE nor the maximal k-partite clique problem are

designed for general labelled graphs (or HINs). Moreover,

there are cliques that can be found by MMCE but not by

them. For instance, the maximal m-clique in Fig. 1d is neither

a classical clique nor a k-partite clique.

As discussed in [23], MCE is NP-hard. Because MMCE is a

generalization of MCE, MMCE is also NP-hard. Nevertheless,

we have developed new solutions for MMCE, which run

reasonably fast on large HINs in our experiments. We will

study these algorithms in the next few sections. We will use

“embedding” and “subgraph isomorphic embedding”, as well

as “label-matched set” and “label-matched node set”, in an

interchangeable manner. We will simplify Lg(v) and Ng(v)
as L(v) and N (v), respectively, when the context is clear.

The frequently used notations are summarized in Table I.

IV. AN OVERVIEW OF BK

The classical BK algorithm [6], discussed in Section II, is

a well-studied and efficient solution for MCE. Our algorithm

follows the same paradigm of BK. Hence, before describing

our solution, let us review BK briefly. BK is a recursive

solution that searches for all maximal cliques in a given

unlabelled graph. The intuition is to expand an existing clique

to a larger one iteratively. Three disjoint sets are maintained

in BK: a set U of nodes in the current detected clique, a set

C of candidates for clique expansion (i.e., ∀v ∈ C, G[U ∪ v]
is a clique), and a set NOT of forbidden nodes (i.e., ∀v ∈ NOT,

G[U ∪v] is a clique, and all maximal cliques containing U ∪v
have already been found). Note that NOT is used to ensure

every maximal clique will only be reported once. Algorithm 1

is the pseudocode of BK [39]. Given a graph G, by invoking

Algorithm 1: BK(U , C, NOT)

1 if C = ∅ then

2 if NOT = ∅ then
3 Output G[U] as a maximal clique;

4 return;

5 while C �= ∅ do
6 if ∃v ∈ NOT,N (v) ⊇ C then

7 return;

8 sample uniformly at random a node u ∈ C;
9 C ← C\u;

10 Cnew ← C ∩N (u);
11 NOTnew ← NOT ∩N (u);
12 BK(U ∪ u, Cnew, NOTnew);
13 NOT← NOT ∪ u;

BK(∅, VG, ∅), we can find all maximal cliques in G. The

following are 4 key points.

• Initial state. Initially, both U and NOT are empty and all

nodes are considered as candidates (i.e., C = VG).

• Node expansion. The algorithm proceeds by iteratively

adding each candidate u from C to U , updating C and NOT

to include only neighbors of u (lines 10-11), and making a

recursive call to find all maximal cliques containing u∪U (line

12). Then, we add u to NOT to exclude it from consideration

in future cliques (line 13).

• Recursion termination. Through recursive invocations, a

maximal clique is reported when both of the sets C and NOT

are empty. The status that C = ∅ and NOT
= ∅, means G[U] is

a clique, but it is not a maximal clique since each node in NOT

can be added into G[U] to become a larger clique. Hence, we

can backtrack directly without reporting.

• Early stop. Note that we can stop to further expand the

current clique if there exists a node v in NOT which is adjacent

to all nodes in C (lines 6-7). Because the node v will be kept in

NOT (i.e., NOT
= ∅) even when C = ∅. We call this operation

“early stop pruning”.

A running example of BK is provided in the Appendix

section.

To solve the MMCE problem, we propose a framework

which follows the BK algorithm to recursively enumerate

maximal m-cliques. However, adapting BK to solve MMCE

is not trivial due to the followings 4 major challenges:

Challenge 1. The initial state of adopting BK for MMCE

is not clear. It is not efficient to find maximal m-cliques by

expanding from an empty set which is used in BK, since any

maximal m-clique must contain at least one embedding of the

given motif. We need to seek for a new framework which can

leverage existing solutions for subgraph isomorphism.

Challenge 2. In node expansion, for the BK algorithm, after

picking a new node u, we only need to check whether nodes

in C (resp. NOT) is adjacent to u for computing Cnew (resp.

NOTnew). This step costs O(n). However, the problem of

examining whether a node can be added into the current m-

clique to form a larger one, is challenging. As we will present

in Section VI, it is NP-hard. We need to derive novel pruning

strategies to improve the efficiency.

Challenge 3. The early stop pruning in BK is not suitable

for MMCE since the definition of m-clique is much more

749

Algorithm 2: META-Basic(G, M)

Input: Graph G and motif M
Output: All maximal m-cliques of M in G

1 for each embedding S found by an existing subgraph isomorphism

algorithm do

2 S′ ← {u|u ∈ VG\S,N (u) ∩ S �= ∅};
3 C ← Refine(S, S′);
4 GetMMC(S, C, ∅);

5 procedure Refine(U,X)
6 Xnew ← ∅;
7 for each x ∈ X do
8 if mCliqueCheck(U, x) is true then
9 Xnew ← Xnew ∪ x;

10 return Xnew;

Algorithm 3: mCliqueCheck(U, x)

1 for each label-matched set H of M in G[U ∪ x] containing x do
2 if G[H] is not an embedding of M then
3 return false;

4 return true;

complicated (general) than traditional clique. It is extremely

expensive to check whether a node in NOT can be kept even

when C = ∅.

We address Challenge 1 by proposing a novel framework

for MMCE which considers embeddings of the given motif as

initial states. However, based on that framework, a new prob-

lem we encounter is the computation of duplicated maximal

m-cliques since a maximal m-clique can be found starting from

different embeddings. This poses a new challenge (Challenge

4) of avoiding duplication which is not faced by the BK

algorithm. We utilize a set-trie structure to avoid computing

duplicate maximal m-cliques.

V. META: THE MAXIMAL M-CLIQUE ENUMERATION

ALGORITHM

We now present the Maximal m-clique EnumeraTion

Algorithm (META for short), which aims to solve the MMCE

problem quickly. In this section, we discuss its basic version

(called META-Basic). In the following sections, we will study

how to further enhance the performance of META-Basic.

Given an m-clique G[U], how to check whether it is a

maximal one? Intuitively, G[U] is maximal if ∀U ′ ⊆ (VG\U)
(U ′
= ∅), G[U ∪ U ′] is not an m-clique. However, it is

expensive to check the maximality in this way because of

the huge number of U ′. In the following, we introduce two

preliminary lemmas to simplify such checking.

Lemma 5.1: Given a graph G, a motif M , and two m-cliques

G[U1] and G[U2] with node set U1 ⊆ U2, for any node set

U3 ⊆ (U2\U1), G[U1 ∪ U3] is an m-clique.

We put all proofs of the lemmas of this paper into the

Appendix section.

Lemma 5.2 (Maximality): Given a graph G and a motif M ,

an m-clique G[U] is maximal if and only if ∀v ∈ VG\U ,

G[U ∪ v] is not an m-clique.

By the definition of m-clique, we can observe that any

m-clique must contain at least one embedding of M . Thus,

according to Lemma 5.2, we can claim that every maximal

m-clique can be found by expanding from any embedding it

contains. Based on this observation, we develop META-Basic

(Algorithm 2), which (1) enumerates all embeddings of M
in G, and (2) for each embedding S, finds out all maximal

m-cliques containing S.

Specifically, we first use a state-of-the-art subgraph isomor-

phism algorithm (e.g., VF3 [7]) to find all embeddings of M
sequentially. Once a new embedding S is found, we compute

the initial candidate set C such that ∀u ∈ C, G[S ∪ u] is

an m-clique of M . A straightforward way is to examine, for

every node u ∈ VG\S, whether G[S ∪ u] is an m-clique.

We observe a simple pruning trick which is to check only

those nodes which are adjacent to some node in S, i.e.,

{u|u ∈ VG\S,N (u) ∩ S
= ∅}. Because if a node u is

not adjacent to S, for any label-matched set H ⊆ (S ∪ u)
containing u, G[H] is disconnected which means it is not an

embedding. Here we encapsulate the candidate computation

into the Refine procedure. Given an m-clique G[U] and

a set X of nodes, Refine(U,X) returns a set Xnew such

that ∀x ∈ Xnew, G[U ∪ x] is an m-clique. Furthermore, in

Refine, the mCliqueCheck procedure (Algorithm 3) is to

check whether G[U ∪ x] is an m-clique. Intuitively, by the

definition of m-clique, G[U ∪ x] is an m-clique if and only if

each label-matched set H in G[U ∪x] is an embedding of M .

Hence, mCliqueCheck returns true if all label-matched sets

are embeddings; otherwise, it returns false.

After obtaining C, we invoke GetMMC to find all maximal

m-cliques containing the embedding S. Before introducing

GetMMC in detail, let us give an example of executing META-

Basic.

Example 5.1: Consider the running example in Fig. 1. We

first compute embeddings of M sequentially. There are 4

embeddings, namely S1 = {v1, v3, v5}, S2 = {v2, v3, v5},

S3 = {v6, v3, v5} and S4 = {v6, v5, v8}. For each embedding,

we detect all maximal m-cliques containing it. Take S1 as an

example. We first get all nodes in VG\S1 which are adjacent to

any node S1, i.e., S′ = {v2, v4, v6, v7, v8}. Next, we invoke

Refine(S1, S
′) to compute C. In particular, for each node

u ∈ S′, we test whether G[S1 ∪ u] is an m-clique. Neither

nodes v4 and v7 can be added into the result set since M
does not contain the label “V”, nor can node v8 since there

exists a label-matched set {v1, v5, v8} in G[S ∪ v8] which is

not an embedding of M . After invoking Refine, we get the

candidate set C = {v2, v6}. Next, GetMMC(S1, C, ∅) is invoked

to find out all maximal m-cliques containing S1. Finally, G1

in Fig. 1d is found and reported. After processing all these

4 embeddings, maximal m-cliques G1 and G2 are obtained,

as shown respectively in Fig.s 1d and 1e. Notice that in this

example, G1 can be detected through the expansion of S1, S2,

and S3, respectively. Hence, duplicated maximal m-cliques are

detected. We will discuss how to avoid it in Section VIII.

A. The GetMMC Algorithm

In what follows, we illustrate GetMMC in detail. The purpose

of GetMMC in Algorithm 2 (line 4) is to find out all maximal

750

Algorithm 4: GetMMC(U , C, NOT)

1 if C = ∅ then

2 if NOT = ∅ then
3 Output G[U] as a maximal m-clique;

4 return;

5 while C �= ∅ do
6 sample uniformly at random a node u ∈ C;
7 C ← C\u;
8 Cnew ← Refine(U ∪ u, C);
9 NOTnew ← Refine(U ∪ u, NOT);

10 GetMMC(U ∪ u, Cnew, NOTnew);
11 NOT← NOT ∪ u;

m-cliques containing the given embedding S.

As shown in Algorithm 4, similar to the BK algorithm, we

maintain three disjoint sets of nodes: (1) the set U of nodes

in the current search path (G[U] is an m-clique), (2) the set

C of nodes that can be added into U , i.e. ∀v ∈ C, G[U ∪ v]
is an m-clique, and (3) the set NOT of nodes where for each

node v ∈ NOT, G[U ∪ v] is an m-clique and all maximal m-

cliques containing U∪v have been found. The main differences

between BK and GetMMC are listed as follows. First, for the

initial state, BK is (∅, VG, ∅) while the initial state of GetMMC is

(S, C, ∅). Second, in the node expansion step, when computing

Cnew and NOTnew after the selection of node u ∈ C, in BK

we can compute them by simply checking whether a node

is adjacent to u. However, in GetMMC we invoke Refine to

filter out those nodes that cannot be added into G[U∪u] which

is expensive. Third, the early stop pruning in BK no longer

applies in GetMMC. Next, we show the correctness of GetMMC.

Lemma 5.3: [Correctness of Algorithm 4] Given a graph

G, a motif M , an embedding S of M in G and the initial

candidate set C, GetMMC(S, C, ∅) can find out all maximal m-

cliques containing S without duplication.

Based on Lemma 5.3 and the fact any maximal m-clique

must contain at least one embedding of M , we can claim that

META-Basic(G,M) is correct, i.e., it can find out all maximal

m-cliques of M in G.

Complexity. Given a graph G and a motif M , let ρ =
O(

(
n

|VM |

)
) denote the time cost of finding all embeddings

of M in G, and α denote the time cost of mCliqueCheck.

In addition, the worst case time complexity of BK without

early stop pruning is O(n!). Hence, the worst case time cost

of the META-Basic algorithm is O(ρ + α ∗ n!). Because

during the node expansion, META-Basic costs α to check

whether a node can be kept while it only costs O(1) in BK

(i.e., adjacent check). We consider finding all embeddings

(subgraph isomorphism) as a black box, any state-of-the-art

algorithms can be used to speed up that part.

Discussions. Up to now, we have illustrated our META-Basic

algorithm. Below are several aspects which we focus on to

improve the efficiency of META-Basic.

• As discussed in Challenge 2 (in Section IV), the problem

of examining whether a node can be added into the current

m-clique to form a larger one (the mCliqueCheck algorithm),

is NP-hard (as we will prove later in Section VI). We present

an efficient pruning method to improve the performance by

introducing the dominance relationship between nodes.

• Different with BK, we do not use any early stop checking

technique in the current GetMMC algorithm due to high com-

plexity of deciding whether a node from NOT can be kept even

when C = ∅. In Section VII, we derive an early stop pruning

strategy customized for m-cliques to check whether we can

stop to further expand the current m-clique early.

• Another issue of META-Basic is that duplicated maximal m-

cliques can be reported. Since we detect maximal m-cliques

for each embedding individually, a maximal m-clique which

contains multiple embeddings will be found multiple times.

The size of search space can be reduced significantly if we can

avoid to re-compute those maximal m-cliques in an early stage.

We will discuss how to avoid duplications in Section VIII.

VI. ADVANCED NODE EXPANSION

In this section, we focus on improving the performance

of node expansion, i.e., checking whether a node can be

incorporated into an m-clique to become a larger one. First,

we show that this problem is NP-hard. Then, we propose a

pruning strategy to speed up node expansion.

The following lemma shows that it is NP-complete to decide

whether an m-clique still is an m-clique after removing an

arbitrary edge.

Lemma 6.1: Given a motif M , an m-clique g = (Vg, Eg)
with |Vg| = |VM |, and a graph g′ = (Vg, Eg\e) where e ∈ Eg ,

the problem of deciding whether g′ is an m-clique is NP-

complete.

Based on Lemma 6.1, we can have the following Lemma.

Lemma 6.2: Given a motif M , an m-clique g = (Vg, Eg), a

node u /∈ Vg , let g′ be a super graph of g where Vg′ = Vg ∪u
and there is no constraint on edges from u to nodes in Vg . The

problem of deciding whether g′ is an m-clique is NP-hard.

Although it is NP-hard to identify new candidates, we have

proposed a pruning strategy to improve the efficiency in some

cases. The intuition of the proposed strategy is to utilize: 1)

the fact that each label-matched set in the current m-clique

is an embedding of M ; and 2) the dominance relationship

between the new node and those nodes in the current m-

clique, to facilitate the checking of whether a label-matched set

containing the new node is an embedding. Next, we first show

Lemma 6.3 for checking whether a label-matched set is an

embedding, and then show Lemma 6.4 for checking whether

a node can be incorporated into the current m-clique.

Lemma 6.3: Given a motif M , an m-clique G[U] and a

node u ∈ VG\U , for any label-matched set H ⊆ (U ∪ u)
containing u, if ∃v ∈ U\H , s.t., L(v) = L(u) and (N (u) ∩
H) ⊇ (N (v) ∩ (H\u)), G[H] is an embedding of M .

Example 6.1: For the graph G and motif M in Fig. 4

with node-labels being {“A”, “B”}, suppose we have found

an m-clique G[U] and would like to check whether the

label-matched set H = {v6, v3, v5} containing u = v6
is an embedding. Since there exists a node v1, such that

L(v1) = L(v6)=“A” and (N (v6)∩H) = {v3, v5} ⊇ (N (v1)∩
(H\v6)) = {v3}, by Lemma 6.3 we can claim that G[H] is

an embedding of M without any isomorphism checking.

751

752

Algorithm 6: EarlyStopCheck(U, C, NOT)

1 for each v ∈ NOT do

2 compute DU∪C
v ;

3 D′ ← DU∪C
v \C;

4 t← the number of nodes in M with label being L(v);
5 if 1 + |D′| > t then
6 return true;

7 return false;

Lemma 7.1: When invoking GetMMC(U, C, NOT), it will not

output anything if ∃v ∈ NOT, ∀C′ ⊆ C,

G[U ∪ C′]is an m-clique ⇒ G[U ∪ C′ ∪ v]is an m-clique.

Since the number of subsets of C is 2|C|, it costs O(2|C| ∗α)
time to check whether all subsets satisfy the condition men-

tioned in Lemma 7.1, where α is the time cost of checking

whether a subgraph is an m-clique (it is NP-hard as analyzed

in Section VI). Thus, it is too expensive to do this. Can we

find a way to do early stop pruning efficiently? We observe

that the dominance relationship introduced in Section VI can

also be used here. The following lemma shows that in some

cases, we can stop to expand remaining nodes in C.

Lemma 7.2: Given an m-clique G[U], a set C of nodes and

a node v /∈ (U ∪ C), let DU∪C
v be the set of nodes in U ∪ C

dominated by v. Let D′ = DU∪C
v \C and t be the number of

nodes in M with label being L(v). If 1 + |D′| > t, we have,

∀C′ ⊆ C, G[U∪C′]is an m-clique ⇒ G[U∪C′∪v]is an m-clique.

Notice that in Lemma 7.2 we use D′ rather than DU∪C
v

directly. Because we need to ensure that for any C′ ⊆ C, if

G[U ∪C′] is an m-clique, G[U ∪C′∪v] is an m-clique. Hence

any node in C should not be included into the dominance

set. As analyzed in Section VI, the dominance set DU∪C
v can

be computed in O(|U ∪ C| ∗ |N (v)|) time. Hence, we can

check whether 1 + |D′| is larger than t efficiently. Based on

Lemma 7.2, we devise the EarlyStopCheck algorithm as

shown in Algorithm 6. Essentially, we iteratively check all

nodes in NOT. The algorithm returns true if any such node is

detected. EarlyStopCheck can be invoked at the beginning of

the while loop in GetMMC. Specifically, we add the following

code before line 6 in GetMMC (Algorithm 4):

if EarlyStopCheck(U, C, NOT) is true then return;

Once EarlyStopCheck returns true, we can stop searching

maximal m-cliques containing U since there must exist a node

v ∈ NOT which will be kept even when C = ∅.

Interestingly, for the MCE problem which is a special

case of MMCE, i.e., G is an unlabelled graph and M is an

edge connecting two unlabelled nodes, it is easy to check

that EarlyStopCheck will return true iff ∃v ∈ NOT with

N (v) ⊇ C. It is consistent with the early stop pruning in BK.

Hence, the proposed early stop pruning for m-clique is also a

generalization of the one in BK.

VIII. DUPLICATION AVOIDANCE

As shown in Lemma 5.3, for each embedding S, the

GetMMC algorithm can find all maximal m-cliques of M in G
containing S. However, since a maximal m-clique may contain

several different embeddings, it can be found independently

from different embeddings. For instance, in the example shown

in Fig. 1, both embeddings {v1, v3, v5} and {v2, v3, v5} can

lead to the detection of the maximal m-clique G1 (Fig. 1d).

A naive way to avoid reporting duplicated maximal clique is

to store all reported results and check whether it has already

existed through sequential scanning. If the answer is yes, it

will not be reported. Otherwise, it will be added into the result

set. However, there are several drawbacks listed as follows: 1)

since the number of maximal m-cliques can be very large, it is

not efficient to check whether a new one has already existed

in the result set sequentially; 2) it can only avoid reporting

those duplicated maximal m-cliques at the final stage, i.e., the

computation cost of finding those results cannot be reduced.

It would be much better if we can detect early and avoid re-

computing those maximal m-cliques which have already been

reported in previous invocations of GetMMC.

In this section, an efficient algorithm is proposed to avoid

computing duplicated maximal m-cliques as early as possible.

In particular, we model our problem of avoiding duplicated

maximal m-clique generation as the subset query problem. Let

us first introduce the subset query problem.

Definition 8.1 (The Subset Query Problem): Let Ψ be a set

of ordered symbols, S be a group of subsets of Ψ, and U be a

subset of Ψ. A subset query answers whether there exists an

element S ∈ S such that S ⊆ U .

Let Ψ be the set of node ids (ordered) of G, S be the

set of subgraph embeddings have been examined so far, i.e.,

all maximal m-cliques containing them have been generated,

and U be the current explored m-clique in GetMMC. We need

not continue extending U for computing maximal m-cliques

if ∃S ∈ S, S ⊆ U . Because all maximal m-cliques containing

S have already been generated. We use the set-trie structure

which is proposed in [32] for efficient subset query processing.

The set-trie is a tree composed of nodes tagged with indices

from 1 to n where n is the size of the alphabet (in our problem,

n is the number of nodes in G). Essentially, the set-trie is a

trie tree [11] originally designed for efficient string matching

among a set of strings. However, the set-trie is designed to

support subset queries. The root node of the tree is tagged

with “{}” and its children can be the nodes tagged from 1 to

n. A node with tag i can have children tagged with numbers

greater than i (suppose we have a global order for all labels

and there is no duplicate element in all sets). In addition, each

node has a flag (“flag last”) indicating whether it is the last

element in a set (the default value is false). At the beginning,

the tree T only includes the root node which represents an

empty set. Once an ordered set S comes, we update the tree

T by invoking the Insert function, as shown in Algorithm 7.

Note that different from the set-trie proposed in [32], we also

maintain the height of each node for further pruning during

the query processing. The height of the root node is set to 0.

Fig. 6 shows an example set-trie. A set is represented by a

path from root node to a node with flag last set to true (red

nodes). In our problem, since all embeddings (sets) have the

same length, the flag last is set to true iff it is a leaf node.

753

754

755

756

META META-ES-DA META-ES-ANE META-ES META-Basic

motif size
3 4 5 6 7

T
im

e(
se

c)

1

10

102

103

Inf

(a) DBLP

motif size
3 4 5 6 7

T
im

e(
se

c)

10-1

1

10

102

Inf

(b) Amazon

motif size
3 4 5 6 7

T
im

e(
se

c)

10-1

1

10

102

Inf

(c) Reactome

motif size
3 4 5 6 7

T
im

e(
se

c)

10-1

1

10

102

Inf

(d) Yeast

motif size
3 4 5 6 7

T
im

e(
se

c)

1

10

102

103

Inf

(e) Instacart
Fig. 10: Efficiency evaluation over motif size on real graphs.
#Results=102 #Results=103 #Results=5*103 #Results=104

motif size
3 4 5 6 7

T
im

e(
se

c)

10-1

1

10

102

(a) DBLP

motif size
3 4 5 6 7

T
im

e(
se

c)

10-2

10-1

1

10

(b) Amazon

motif size
3 4 5 6 7

T
im

e(
se

c)
10-1

1

10

100

(c) Reactome

motif size
3 4 5 6 7

T
im

e(
se

c)

10-2

10-1

1

10

(d) Yeast

motif size
3 4 5 6 7

T
im

e(
se

c)

10-1

1

10

102

103

(e) Instacart
Fig. 11: Efficiency evaluation over the number of maximal m-cliques reported on real graphs.

REFERENCES

[1] E. Akkoyunlu. The enumeration of maximal cliques of large graphs.
SIAM Journal on Computing, 2(1):1–6, 1973.

[2] A. R. Benson et al. Higher-order organization of complex networks.
Science, 353(6295):163–166, 2016.

[3] F. Bi et al. Efficient subgraph matching by postponing cartesian products.
In SIGMOD, pages 1199–1214, 2016.

[4] V. Boginski et al. Statistical analysis of financial networks. Computa-

tional statistics & data analysis, 48(2):431–443, 2005.
[5] A. Bonato et al. Dimensionality of social networks using motifs and

eigenvalues. PloS one, 9(9):e106052, 2014.
[6] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an

undirected graph. Communications of the ACM, 16(9):575–577, 1973.
[7] V. Carletti et al. Challenging the time complexity of exact subgraph

isomorphism for huge and dense graphs with vf3. TPAMI, 40(4):804–
818, 2018.

[8] J. Cheng et al. Fast algorithms for maximal clique enumeration with
limited memory. In KDD, pages 1240–1248, 2012.

[9] A. Conte et al. Finding all maximal cliques in very large social networks.
In EDBT, pages 173–184, 2016.

[10] G. Creamer et al. Segmentation and automated social hierarchy detection
through email network analysis. In WEBKDD, pages 40–58. 2009.

[11] R. De La Briandais. File searching using variable length keys. In Western

joint computer conference, pages 295–298, 1959.
[12] A. Fabregat et al. Reactome pathway analysis: a high-performance in-

memory approach. BMC bioinformatics, 18(1):142, 2017.
[13] A. Fabregat et al. The reactome pathway knowledgebase. Nucleic acids

research, 46(D1):D649–D655, 2017.
[14] S. Gurukar et al. Commit: A scalable approach to mining communication

motifs from dynamic networks. In SIGMOD, pages 475–489, 2015.
[15] W.-S. Han et al. Turbo iso: towards ultrafast and robust subgraph

isomorphism search in large graph databases. In SIGMOD, pages 337–
348, 2013.

[16] R. A. Hanneman and M. Riddle. Introduction to social network methods,
chapter 11: cliques., 2005.

[17] B. Hou et al. Efficient maximal clique enumeration over graph data.
Data Science and Engineering, 1(4):219–230, 2016.

[18] X. Huang et al. Querying k-truss community in large and dynamic
graphs. In SIGMOD, pages 1311–1322, 2014.

[19] M. Jha et al. Path sampling: A fast and provable method for estimating
4-vertex subgraph counts. In WWW, pages 495–505, 2015.

[20] M. Ji et al. Graph regularized transductive classification on heteroge-
neous information networks. In ECML-PKDD, pages 570–586, 2010.

[21] L. Lai et al. Scalable distributed subgraph enumeration. PVLDB,
10(3):217–228, 2016.

[22] A. Lancichinetti et al. Benchmark graphs for testing community
detection algorithms. Physical review E, 78(4):046110, 2008.

[23] E. L. Lawler et al. Generating all maximal independent sets: Np-
hardness and polynomial-time algorithms. SIAM Journal on Computing,
9(3):558–565, 1980.

[24] M. Ley. Dblp: some lessons learned. PVLDB, 2(2):1493–1500, 2009.
[25] Q. Liu et al. k-partite cliques of protein interactions: A novel subgraph

topology for functional coherence analysis on ppi networks. Journal of

theoretical biology, 340:146–154, 2014.
[26] G. Micale et al. Fast analytical methods for finding significant labeled

graph motifs. DMKD, 32(2):504–531, 2018.
[27] R. Milo et al. Network motifs: simple building blocks of complex

networks. Science, 298(5594):824–827, 2002.
[28] A. Paranjape et al. Motifs in temporal networks. In WSDM, pages

601–610, 2017.
[29] G. A. Pavlopoulos et al. Using graph theory to analyze biological

networks. BioData mining, 4(1):10, 2011.
[30] N. Pržulj. Biological network comparison using graphlet degree distri-

bution. Bioinformatics, 23(2):e177–e183, 2007.
[31] N. Pržulj and N. Malod-Dognin. Network analytics in the age of big

data. Science, 353(6295):123–124, 2016.
[32] I. Savnik. Index data structure for fast subset and superset queries. In

ARES, pages 134–148, 2013.
[33] C. Shi et al. Relevance search in heterogeneous networks. In Pro-

ceedings of the 15th International Conference on Extending Database

Technology, pages 180–191. ACM, 2012.
[34] O. Sporns and R. Kötter. Motifs in brain networks. PLoS biology,

2(11):e369, 2004.
[35] L. D. Stefani et al. Trièst: Counting local and global triangles in fully

dynamic streams with fixed memory size. TKDD, 11(4):43, 2017.
[36] Y. Sun et al. Pathsim: Meta path-based top-k similarity search in

heterogeneous information networks. PVLDB, 4(11):992–1003, 2011.
[37] Y. Sun et al. Pathselclus: Integrating meta-path selection with user-

guided object clustering in heterogeneous information networks. TKDD,
7(3):11, 2013.

[38] Z. Sun et al. Efficient subgraph matching on billion node graphs.
PVLDB, 5(9):788–799, 2012.

[39] E. Tomita et al. The worst-case time complexity for generating all
maximal cliques and computational experiments. Theoretical Computer

Science, 363(1):28–42, 2006.
[40] S. Wuchty et al. Evolutionary conservation of motif constituents in the

yeast protein interaction network. Nature genetics, 35(2):176–179, 2003.
[41] H. Yin et al. Local higher-order graph clustering. In KDD, pages 555–

564, 2017.
[42] Y. Zhang et al. On finding bicliques in bipartite graphs: a novel algorithm

and its application to the integration of diverse biological data types.
BMC bioinformatics, 15(1):110, 2014.

757

