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Abstract—We study the discovery of cliques (or ‘“‘complete”
subgraphs) in heterogeneous information networks (HINs). Ex-
isting clique-finding solutions often ignore the rich semantics
of HINs. We propose motif clique, or m-clique, which redefines
subgraph completeness with respect to a given motif. A motif,
essentially a small subgraph pattern, is a fundamental building
block of an HIN. The m-clique concept is general and allows
us to analyse “complete” subgraphs in an HIN with respect to
desired high-order connection patterns. We further investigate
the maximal m-clique enumeration problem (MMCE), which
finds all maximal m-cliques not contained in any other m-cliques.
Because MMCE is NP-hard, developing an accurate and efficient
solution for MMCE is not straightforward. We thus present the
META algorithm, which employs advanced pruning strategies to
effectively reduce the search space. We also design fast techniques
to avoid generating duplicated maximal m-clique instances. Our
extensive experiments on large real and synthetic HINs show that
META is highly effective and efficient.

I. INTRODUCTION

Heterogeneous information networks (HINs), such as bib-
liographical databases, co-purchasing graphs, and biological
networks, have received a lot of interest from research and
industry communities [20], [24], [30]. Nodes of HINs are
associated with labels, allowing them to capture more so-
phisticated or “high-order” semantics than unlabelled graphs.
In Fig. la, for example, a bibliographical graph G consists
of three kinds of nodes, namely Author (A), Paper (P), and
Venue (V). The rich information contained in an HIN enables
important analysis tasks, including similarity search [33], [36],
clustering [37], and classification [20].

Cliques. In this paper, we study the problem of finding cliques
from an HIN. By definition, a clique is a complete subgraph,
i.e., all nodes in the clique are adjacent to each other. Thus,
a clique contains nodes that are closely related (e.g., a clique
in a social network can reveal users who are close friends).
A maximal clique is a clique that is not a subgraph of any
larger clique. For example, in G (Fig. 1a), one of its maximal
cliques is Gy (Fig. le). The problem of discovering all the
maximal cliques, called maximal clique enumeration (MCE),
has been well studied (e.g., [1], [9], [17], [39]). Cliques have
been extensively used in social community detection [16], hier-
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Fig. 1: Illustrating m-cliques for a bibliographical network (A:
Author, P: Paper, V: Venue).

archy detection through email networks [10], financial network
analysis [4], and co-expressed gene group detection [29].

Cliques for HINs. Our main goal is to investigate the notion
of a clique for an HIN, which contains labelled nodes. Why
is this an issue? Let us consider the bibliographical network
G in Fig. la again. Suppose that we want to find out co-
authors who exhibit a close collaboration relationship. Can
we get this information from a clique of G? Unfortunately,
this is not possible, because an HIN is often associated with
a schema [36], which serves as a template for a graph, and
tells how many types of nodes there are in the graph and
where the possible edges exist. Fig. 1b shows the schema
of GG, which depicts the connections allowed between nodes
with labels “A”, “P”, and “V”. Because no edges between
any two “A” nodes are allowed, and a clique is a complete
subgraph, there does not exist any clique that has two or more
“A” nodes. Hence, we cannot find any clique that contains
two or more co-authors from Fig. 1a. Traditional cliques (e.g.,
Fig. le) simply cannot capture the relationships among two
or more co-authors. We believe that the sense of a clique in
an HIN is still important. In the above example, we may wish
to find the “clique” of co-authors who collaborate on every
paper. However, the notion of “complete subgraph” needs to
be changed, because not every pair of nodes can be connected
in an HIN (e.g., an author cannot be linked to another author).
How should we rethink the notion of cliques for HINs, whose
nodes are labelled and edges are structured by schemas?

Motifs. To address the above question, we incorporate motifs
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Fig. 3: A maximal m-clique for a social network.

to the clique definition. To understand this, let us review the
background of motifs. Motif-based analysis has emerged as an
important tool for HIN insight discovery. A motif, also known
as higher-order structure or graphlet, is a small subgraph
pattern. As pointed out by [27], [31], a motif is a fundamental
building block of large and complex networks, and it enables
“high-order semantics” analysis for HINs. Fig. lc illustrates
a triangle motif M, which describes: (1) an author writes at
least two papers; (2) a paper is cited by another one. Motifs
are useful in a wide range of graph problems, such as motif
discovery [14], [26], graph clustering [2], [41], community
search [18], and motif frequency estimation [19], [28], [35].

m-Cliques. We now present the motif-clique (or m-clique in
short). Intuitively, an m-clique generalizes a clique; it is a
“complete subgraph” in terms of a user’s defined patterns
(motifs), rather than edges. An m-clique is therefore a “higher-
order” clique based on a user-given motif, capturing the de-
sired relationship among node labels. More specifically, given
an HIN G and a motif M, an m-clique is an induced subgraph
G’ of G, such that for every node set H of G’ containing the
same number of nodes with M and sharing the same set of
node labels with M, M is isomorphic to the subgraph of G’
induced by H. Figs. 1d and le show two m-cliques of G
(Fig. la), based on the motif M shown in Fig. lc. Both G;
and G5 are induced subgraphs of GG. More importantly, M
is isomorphic to every 3-node induced subgraph of G; with
labels {“A”, “P”, “P”} (e.g., {v1,vs3,v5} and {va,v3,v5}); M
is also isomorphic to the three nodes of Gs. From G, we can
see that all the three co-authors (i.e., vy, vo, and vg) wrote the
two related papers (i.e., v3 and vs). Therefore, G; reveals the
identities of close collaborators, as well as their publications.
Notice that this cannot be obtained by using a traditional
clique. In this paper, we focus on maximal m-cliques, i.e., m-
cliques which are not included in a larger m-clique. As shown
in Fig. 1, both G; and G are maximal m-cliques. Next, we
illustrate m-cliques with two more examples on real datasets.
Scenario 1: DBLP. Fig. 2 shows a maximal m-clique G’ based
on the motif M (Fig. 1c) obtained from the DBLP dataset.
This subgraph contains four authors and three papers with
titles shown in Fig. 2b. Notice that M is subgraph isomorphic
to every 3-node induced subgraph of G’ with labels {“A”,
“P”, “P”} (e.g., the subgraph induced by {“Jiawei Han”, “P17,

“P2”}). Thus, G’ reflects that these four authors have a close
collaboration on papers related to data cubes. Observe that this
m-clique cannot be obtained by traditional clique solutions,
because there is no edge between any two authors in the
schema of DBLP. By finding out all the maximal m-cliques
in DBLP with the motif M, we can obtain different groups of
research collaborators and their related publications.
Scenario 2: Social networks. Consider a social network
(e.g., Facebook or LinkedIn), which contains both friendship
relations and user attributes. As shown in Fig. 3b, this HIN
contains 3 kinds of nodes: “User”, “Employer”, and “College”.
Suppose that a headhunting company intends to find people
who studied in the same college and worked/are working for
the same company. This task cannot be accomplished by a
traditional clique, because the underlying schema does not
allow an edge between an employer and a college node. Let
us see how this can be achieved by an m-clique, with a motif
shown in Fig. 3a. This motif depicts that we want to find a
cohesive community, with at least two users associated with
the same college and employer. The resulting maximal m-
clique G, shown in Fig. 3b, indicates that Bob, Kate, and
Peter are MIT alumni, and they also worked for the Apple
company.

Challenges and solutions. Given a large HIN G and a
motif M, we aim to discover all the maximal m-cliques
of G efficiently. We term this problem maximal m-clique
enumeration, or MMCE. As pointed out by [23], the MCE
problem (for finding maximal cliques) is NP-hard. Because
MMCE is a generalization of MCE, finding all the maximal
m-cliques from G is extremely costly, especially when G is
large. Moreover, to our understanding, there are no previous
attempts for solving the MMCE problem.

To tackle MMCE, we borrow the insight from existing
MCE solutions ( [1], [9], [17], [39]), which generally follow
a node expansion process: given a candidate subgraph for
a clique, grow it by including a new node. Our proposed
solution also follows this paradigm. However, as m-cliques are
more complex, adopting MCE algorithms requires a significant
amount of effort. We propose the META algorithm, which
iteratively performs subgraph isomorphism and maximal m-
clique detection. By introducing the dominance relationship
between nodes, we propose principled strategies to facilitate
node expansion. We also design early-stop pruning criteria to
reduce the search space needed. To avoid computing dupli-
cated maximal m-cliques during node expansion, we utilize a
set-trie structure to perform duplication checking.

We have performed an extensive evaluation of our algo-
rithms on large real and synthetic HINs. Three case studies
on bibliographical databases, co-purchasing graphs, and bio-
logical networks demonstrate the applicability of m-cliques on
a wide range of applications. Furthermore, META is highly scal-
able, and is several orders of magnitude faster than baseline
solutions. For a 10 million-node HIN, our best algorithm only
needs five seconds to return 1,000 maximal m-cliques.
Organization. We review related work in Section II. Sec-
tion III formulates the MMCE problem. Section IV reviews
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an algorithm for MCE, which forms the basis of our solutions.
In Section V, we present the basic solution META-Basic. We
study advanced pruning strategies for MMCE in Sections VI,
VII and VIII, respectively. Section IX reports experimental
results. We conclude in Section X.

II. RELATED WORK

Maximal clique enumeration (MCE), which finds maximal
cliques (or maximal subgraphs whose nodes are adjacent
to each other) from unlabelled graphs, has been extensively
studied [1], [9], [17], [39]. Researchers have also examined
bi-cliques (for bi-partite graphs) [42] and k-partite cliques (for
k-partite graphs) [25]. In fact, these cliques are special cases
of the m-clique (Section III). In this paper, we propose motif-
based cliques for HINs, which consider both structure and
label information of HINs.

Because MCE is NP-hard [23], researchers have devel-

oped pruning strategies to reduce the search space and time
costs [6], [8], [17]. Most of these approaches were based on
the classical BK algorithm [6], which uses backtracking to
explore the search space effectively. Our META algorithm is
also inspired by BK. However, adapting BK to solve MMCE
is not trivial. This is because we have to incorporate motifs
in the m-clique discovery process, and this makes the solution
more sophisticated. We will discuss the main challenges of
extending BK in detail in Section IV.
Motifs, or small patterns, are fundamental building blocks
for large networks [27], [31]. It has been studied in vari-
ous domains, such as neuroscience [34], biology [40], and
social networks [5], [31]. Recently, several important motif-
related problems have been examined. For instance, Gurukar
et al. [14] studied the mining of communication motifs from
dynamic interaction networks. They developed COMMIT, a
technique that converts a dynamic network into a database of
sequences, in order to discover communication motifs. In [2],
[21], [41], the problem of motif-aware (or higher-order) graph
clustering was addressed. Motif conductance, a generalization
of the conductance metric for motifs, is employed in the
graph clustering process. In [19], [28], [35], the problem of
counting or estimating the frequency of motifs was addressed.
We are not aware of any work that incorporates motifs in the
clique detection problem. We propose the m-clique, and design
strategies to retrieve them efficiently from a large HIN.

III. THE MAXIMAL M-CLIQUE ENUMERATION PROBLEM

We model a Heterogeneous Information Network (HIN) as
an undirected and labelled graph G = (Vig, Eq, La, X¢)
where Vi is the set of nodes, Eg C Vg x Vg is the set
of edges, X is the set of labels, and Ls is a labelling
function that assigns each node v € Vi a single label in
Y (denoted by L (v)!. We use G[U] = (U, E[U], L, X¢)
to denote the subgraph of G induced by node set U C Vg,
where E[U] = {(u,v)lu,v € U, (u,v) € Eg}. Let Ng(v)
be the set of neighbors of v € Vg in G. For ease of

'In this paper, we focus on undirected HINs for simplicity. Our techniques
can be readily extended to handle edge-labeled and directed HINs.

presentation, we use “graph” to refer to an HIN. As illustrated
in Section I, the schema of an HIN expresses all allowable
links between node labels (e.g., Fig. 1b). Further, we define a
motif M = (Vas, Enr, Lar, Xar) to be any small connected
HIN. Given a graph G, a valid motif for G should follow
G’s schema, i.e., 1) only contains node labels defined by the
schema; and 2) only contains edges between node labels that
are allowed by the schema. Typically, M is given by users
(e.g., a “triangle” in Fig. 1c). The particular motif used is
application specific. We have illustrated the use of motifs in
bibliographic and social networks (Sec I), and we will also
discuss a few more motifs used in the case studies (Sec 1X).

In this paper, we generalize the definition of cliques for
motif-based analysis on HINs. Before describing our m-clique
model, let us review the definition of subgraph isomorphism.

Definition 3.1 (Subgraph Isomorphism [7]): A motif M is
subgraph isomorphic to a graph G if there exists an injective
mapping ¢: Var — Vg, s.t., Yu € Vi, Las(u) = Lg(é(u))
and Yu,v € Vyy, if (u,v) € Eypy, then (¢(u), p(v)) € Eg,
where ¢(u) is the node to which u is mapped.

Clearly, M is subgraph isomorphic to G iff M is isomorphic
to a subgraph (not necessarily induced) of G. We call an
injective mapping from nodes in M to nodes in G a subgraph
isomorphic embedding of M in G.

Next, we propose a preliminary concept called “label-
matched node set”. Intuitively, it is a set of nodes such that
these nodes have the same labels with the given motif. For
example, for the graph G in Fig. 1a and the motif M in Fig. lc,
every 3-node set with labels {“A”, “P”, “P”}, e.g., {v1, v3,v5}
and {vg,v3,v5}, is a label-matched node set of M in G.

Definition 3.2 (Label-matched Node Set): Given a graph G
and a motif M, a node set H C V¢ is label-matched with M if
H and M have the same number of nodes (i.e., |H| = |Vy]),
and 3 bijection ¢ : H — Vjy, such that Vu € H, Lg(u) =
Ly (¢(u)). We call H a label-matched node set of M in G.

We now present formal definitions of m-clique and maximal
m-clique.

Definition 3.3 (Motif Clique): Given a graph GG and a motif
M, a motif clique (m-clique for short) of M in G is an induced
subgraph G’ of G, such that G’ and M have the same set of
labels, at least one label-matched node set of M is contained
in G’ and for each label-matched node set H in G’, M is
subgraph isomorphic to G’[H| (the induced subgraph).

Definition 3.4 (Maximal m-clique): An m-clique is a maxi-
mal m-clique if it is not contained in any other m-clique.
Problem Statement. Given a graph G and a motif M, we
study the problem of maximal m-clique enumeration (MMCE)
which efficiently extracts all maximal m-cliques of M in G.

Example 3.1: For the graph G in Fig. 1a and the motif M in
Fig. 1c, there are two maximal m-cliques, as shown in Fig.s 1d
(G1) and le (Gs). For Gy, it contains three label-matched
node sets: {{vi,vs,vs}, {va,v3,v5}, {vs,v3,v5}}. We can
observe that M is subgraph isomorphic to all subgraphs of
G, induced by these label-matched sets. For G, Vg, is a
label-matched node set and M is subgraph isomorphic to G.

748



TABLE I: Notations

Notation | Description

M and G Motif and data graph

Vg and Eg Node set and edge set of G

Vs and Epy | Node set and edge set of M

G[U] Subgraph of G induced by node set U
Ly(v) Label of v in g

Ny (v) Neighbors of v in g

[U] Number of nodes in node set U

DY Nodes in U dominated by v

n Number of nodes in G

Generalization. MMCE is a generalization of the well-studied
maximal clique enumeration (MCE) problem defined for un-
labelled graphs and the maximal k-partite clique problem
defined for k-partite graphs. Here, we summarize how MMCE
generalizes them in detail:

e When G is an unlabelled graph, the MCE problem [1]
searches for all maximal cliques. This is equivalent to MMCE
for G, by setting M to be a single edge connecting two
unlabelled nodes.

e When G is a k-partite graph (k > 2), the maximal k-partite
clique problem [25] asks for all maximal k-partite cliques of G
(i.e., maximal complete k-partite subgraphs of (). Particularly,
when k& = 2, it is the maximal bi-clique problem [42]. This
is the same as MMCE for G, where M is a complete graph
containing k nodes with & different labels.

Neither MCE nor the maximal k-partite clique problem are
designed for general labelled graphs (or HINs). Moreover,
there are cliques that can be found by MMCE but not by
them. For instance, the maximal m-clique in Fig. 1d is neither
a classical clique nor a k-partite clique.

As discussed in [23], MCE is NP-hard. Because MMCE is a
generalization of MCE, MMCE is also NP-hard. Nevertheless,
we have developed new solutions for MMCE, which run
reasonably fast on large HINs in our experiments. We will
study these algorithms in the next few sections. We will use
“embedding” and “‘subgraph isomorphic embedding”, as well
as “label-matched set” and “label-matched node set”, in an
interchangeable manner. We will simplify L,(v) and Ny (v)
as L(v) and N (v), respectively, when the context is clear.
The frequently used notations are summarized in Table I.

IV. AN OVERVIEW OF BK

The classical BK algorithm [6], discussed in Section II, is
a well-studied and efficient solution for MCE. Our algorithm
follows the same paradigm of BK. Hence, before describing
our solution, let us review BK briefly. BK is a recursive
solution that searches for all maximal cliques in a given
unlabelled graph. The intuition is to expand an existing clique
to a larger one iteratively. Three disjoint sets are maintained
in BK: a set U of nodes in the current detected clique, a set
C of candidates for clique expansion (i.e., Vv € C, G[U U v]
is a clique), and a set NOT of forbidden nodes (i.e., Vv € NOT,
G[U Uw] is a clique, and all maximal cliques containing U Uv
have already been found). Note that NOT is used to ensure
every maximal clique will only be reported once. Algorithm 1
is the pseudocode of BK [39]. Given a graph G, by invoking

Algorithm 1: BK(U, C, NOT)

1 if C = 0 then

2 if NOT = () then

3 | Output G[U] as a maximal clique;
4 | return;

s while C # ) do
6 if Jv € NOT, V' (v) D C then

7 | return;

8 sample uniformly at random a node u € C;
9 C + C\u;

10 Crew + CNN(u);

1 NOTpew < NOT NN (u);

12 BK(U U u, Cnewh NUTnew);

13 NOT < NOT U u;

BK(0, Vi, ®), we can find all maximal cliques in G. The
following are 4 key points.

o Initial state. Initially, both U and NOT are empty and all
nodes are considered as candidates (i.e., C = V).

e Node expansion. The algorithm proceeds by iteratively
adding each candidate v from C to U, updating C and NOT
to include only neighbors of w (lines 10-11), and making a
recursive call to find all maximal cliques containing ©UU (line
12). Then, we add u to NOT to exclude it from consideration
in future cliques (line 13).

e Recursion termination. Through recursive invocations, a
maximal clique is reported when both of the sets C and NOT
are empty. The status that C = () and NOT # (), means G[U] is
a clique, but it is not a maximal clique since each node in NOT
can be added into G[U] to become a larger clique. Hence, we
can backtrack directly without reporting.

e Early stop. Note that we can stop to further expand the
current clique if there exists a node v in NOT which is adjacent
to all nodes in C (lines 6-7). Because the node v will be kept in
NOT (i.e., NOT # () ) even when C = (). We call this operation
“early stop pruning”.

A running example of BK is provided in the Appendix
section.

To solve the MMCE problem, we propose a framework
which follows the BK algorithm to recursively enumerate
maximal m-cliques. However, adapting BK to solve MMCE
is not trivial due to the followings 4 major challenges:
Challenge 1. The initial state of adopting BK for MMCE
is not clear. It is not efficient to find maximal m-cliques by
expanding from an empty set which is used in BK, since any
maximal m-clique must contain at least one embedding of the
given motif. We need to seek for a new framework which can
leverage existing solutions for subgraph isomorphism.
Challenge 2. In node expansion, for the BK algorithm, after
picking a new node u, we only need to check whether nodes
in C (resp. NOT) is adjacent to u for computing Cpey (resp.
NOTpey). This step costs O(n). However, the problem of
examining whether a node can be added into the current m-
clique to form a larger one, is challenging. As we will present
in Section VI, it is NP-hard. We need to derive novel pruning
strategies to improve the efficiency.

Challenge 3. The early stop pruning in BK is not suitable
for MMCE since the definition of m-clique is much more
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Algorithm 2: META-Basic(G, M)
Input: Graph G and motif M
Output: All maximal m-cliques of M in G

1 for each embedding S found by an existing subgraph isomorphism
algorithm do

2 S {ulu € Va\S,N(u)N S # 0};
C <+ Refine(S,S5’);
GetMMC(S, C,0);

procedure Refine(U, X)

Xnew < 0;

for each x € X do

L if mCliqueCheck(U, x) is true then

PN

e ® 9w

L Xnew < Xnew U T;

10 return Xpey:

Algorithm 3: mCliqueCheck(U, )

1 for each label-matched set H of M in G[U U z] containing = do
2 L if G[H] is not an embedding of M then
3

L return false;
4 return true;

complicated (general) than traditional clique. It is extremely
expensive to check whether a node in NOT can be kept even
when C = .

We address Challenge 1 by proposing a novel framework
for MMCE which considers embeddings of the given motif as
initial states. However, based on that framework, a new prob-
lem we encounter is the computation of duplicated maximal
m-cliques since a maximal m-clique can be found starting from
different embeddings. This poses a new challenge (Challenge
4) of avoiding duplication which is not faced by the BK
algorithm. We utilize a set-trie structure to avoid computing
duplicate maximal m-cliques.

V. META: THE MAXIMAL M-CLIQUE ENUMERATION
ALGORITHM

We now present the Maximal m-clique EnumeraTion
Algorithm (META for short), which aims to solve the MMCE
problem quickly. In this section, we discuss its basic version
(called META-Basic). In the following sections, we will study
how to further enhance the performance of META-Basic.

Given an m-clique G[U], how to check whether it is a
maximal one? Intuitively, G[U] is maximal if YU' C (Vg \U)
U # 0), GI[U UU'] is not an m-clique. However, it is
expensive to check the maximality in this way because of
the huge number of U’. In the following, we introduce two
preliminary lemmas to simplify such checking.

Lemma 5.1: Given a graph GG, a motif M, and two m-cliques
G[U1] and G[Us] with node set U; C Us, for any node set
Us C (UQ\Ul), G[U1 U Ug} is an m-clique.

We put all proofs of the lemmas of this paper into the
Appendix section.

Lemma 5.2 (Maximality): Given a graph GG and a motif M,
an m-clique G[U] is maximal if and only if Yo € Vg\U,
G[U U] is not an m-clique.

By the definition of m-clique, we can observe that any
m-clique must contain at least one embedding of M. Thus,

according to Lemma 5.2, we can claim that every maximal
m-clique can be found by expanding from any embedding it
contains. Based on this observation, we develop META-Basic
(Algorithm 2), which (1) enumerates all embeddings of M
in G, and (2) for each embedding S, finds out all maximal
m-cliques containing S.

Specifically, we first use a state-of-the-art subgraph isomor-
phism algorithm (e.g., VF3 [7]) to find all embeddings of M
sequentially. Once a new embedding S is found, we compute
the initial candidate set C such that Vu € C, G[S U u] is
an m-clique of M. A straightforward way is to examine, for
every node u € Vi\S, whether G[S U u] is an m-clique.
We observe a simple pruning trick which is to check only
those nodes which are adjacent to some node in S, i.e.,
{ulu € Ve\S,N(u) NS # 0}. Because if a node u is
not adjacent to S, for any label-matched set H C (S U wu)
containing u, G[H] is disconnected which means it is not an
embedding. Here we encapsulate the candidate computation
into the Refine procedure. Given an m-clique G[U] and
a set X of nodes, Refine(U, X) returns a set Xp., such
that Vo € Xy, G[U U z] is an m-clique. Furthermore, in
Refine, the mCliqueCheck procedure (Algorithm 3) is to
check whether G[U U z] is an m-clique. Intuitively, by the
definition of m-clique, G[U U z] is an m-clique if and only if
each label-matched set H in G[U U] is an embedding of M.
Hence, mCliqueCheck returns true if all label-matched sets
are embeddings; otherwise, it returns false.

After obtaining C, we invoke GetMMC to find all maximal
m-cliques containing the embedding S. Before introducing
GetMMC in detail, let us give an example of executing META-
Basic.

Example 5.1: Consider the running example in Fig. 1. We
first compute embeddings of M sequentially. There are 4
embeddings, namely S7 = {vi,v3,v5}, So = {va,v3,v5},
S3 = {ve,v3,vs} and Sy = {vg, vs, vs }. For each embedding,
we detect all maximal m-cliques containing it. Take S as an
example. We first get all nodes in Vz\S1 which are adjacent to
any node Sy, i.e., S’ = {va,v4,v6,v7,vs}. Next, we invoke
Refine(S7,5") to compute C. In particular, for each node
u € S’, we test whether G[S; U u] is an m-clique. Neither
nodes vy and v; can be added into the result set since M
does not contain the label “V”, nor can node vg since there
exists a label-matched set {v1,vs,vs} in G[S U vs] which is
not an embedding of M. After invoking Refine, we get the
candidate set C = {vs, v }. Next, GetMMC(Sy, C, 1) is invoked
to find out all maximal m-cliques containing S;. Finally, G
in Fig. 1d is found and reported. After processing all these
4 embeddings, maximal m-cliques G; and G are obtained,
as shown respectively in Fig.s 1d and le. Notice that in this
example, (G can be detected through the expansion of Sy, Sa,
and S3, respectively. Hence, duplicated maximal m-cliques are
detected. We will discuss how to avoid it in Section VIII.

A. The GetMMC Algorithm

In what follows, we illustrate GetMMC in detail. The purpose
of GetMMC in Algorithm 2 (line 4) is to find out all maximal
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Algorithm 4: GetMMC(U, C, NOT)

1 if C = () then

2 if NOT = () then

3 | Output G[U] as a maximal m-clique;
4 | return;

s while C # () do

6 sample uniformly at random a node u € C;
7 C+ C\u;

s Cnew < Refine(U Uu,C);

9 NOTpew < Refine(U U u, NOT);

10 GetMMC(U U u, Cpew, NOTnew);

1 NOT < NOT U u;

m-cliques containing the given embedding S.

As shown in Algorithm 4, similar to the BK algorithm, we
maintain three disjoint sets of nodes: (1) the set U of nodes
in the current search path (G[U] is an m-clique), (2) the set
C of nodes that can be added into U, i.e. Vv € C, G[U U 7]
is an m-clique, and (3) the set NOT of nodes where for each
node v € NOT, G[U U v] is an m-clique and all maximal m-
cliques containing U Uv have been found. The main differences
between BK and GetMMC are listed as follows. First, for the
initial state, BK is (0, Vg, 0) while the initial state of GetMMC is
(S,C,0). Second, in the node expansion step, when computing
Cuew and NOT,., after the selection of node u € C, in BK
we can compute them by simply checking whether a node
is adjacent to u. However, in GetMMC we invoke Refine to
filter out those nodes that cannot be added into G[U Uu] which
is expensive. Third, the early stop pruning in BK no longer
applies in GetMMC. Next, we show the correctness of GetMMC.

Lemma 5.3: [Correctness of Algorithm 4] Given a graph
G, a motif M, an embedding S of M in G and the initial
candidate set C, GetMMC(S,C, () can find out all maximal m-
cliques containing S without duplication.

Based on Lemma 5.3 and the fact any maximal m-clique
must contain at least one embedding of M, we can claim that
META-Basic(G, M) is correct, i.e., it can find out all maximal
m-cliques of M in G.

Complexity. Given a graph G and a motif M, let p =
(’)((WK”)) denote the time cost of finding all embeddings
of M in G, and « denote the time cost of mCliqueCheck.
In addition, the worst case time complexity of BK without
early stop pruning is O(n!). Hence, the worst case time cost
of the META-Basic algorithm is O(p + « * n!). Because
during the node expansion, META-Basic costs « to check
whether a node can be kept while it only costs O(1) in BK
(i.e., adjacent check). We consider finding all embeddings
(subgraph isomorphism) as a black box, any state-of-the-art
algorithms can be used to speed up that part.

Discussions. Up to now, we have illustrated our META-Basic
algorithm. Below are several aspects which we focus on to
improve the efficiency of META-Basic.

e As discussed in Challenge 2 (in Section IV), the problem
of examining whether a node can be added into the current
m-clique to form a larger one (the mCliqueCheck algorithm),
is NP-hard (as we will prove later in Section VI). We present
an efficient pruning method to improve the performance by
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introducing the dominance relationship between nodes.

e Different with BK, we do not use any early stop checking
technique in the current GetMMC algorithm due to high com-
plexity of deciding whether a node from NOT can be kept even
when C = . In Section VII, we derive an early stop pruning
strategy customized for m-cliques to check whether we can
stop to further expand the current m-clique early.

e Another issue of META-Basic is that duplicated maximal m-
cliques can be reported. Since we detect maximal m-cliques
for each embedding individually, a maximal m-clique which
contains multiple embeddings will be found multiple times.
The size of search space can be reduced significantly if we can
avoid to re-compute those maximal m-cliques in an early stage.
We will discuss how to avoid duplications in Section VIII.

VI. ADVANCED NODE EXPANSION

In this section, we focus on improving the performance
of node expansion, i.e., checking whether a node can be
incorporated into an m-clique to become a larger one. First,
we show that this problem is NP-hard. Then, we propose a
pruning strategy to speed up node expansion.

The following lemma shows that it is NP-complete to decide
whether an m-clique still is an m-clique after removing an
arbitrary edge.

Lemma 6.1: Given a motif M, an m-clique g = (Vy, Ey)
with |Vy| = |Vas], and a graph ¢’ = (V,, Eg4\e) where e € E,,
the problem of deciding whether ¢’ is an m-clique is NP-
complete.

Based on Lemma 6.1, we can have the following Lemma.

Lemma 6.2: Given a motif M, an m-clique g = (V,, E,), a
node u ¢ Vg, let ¢’ be a super graph of g where Vyy =V, Uu
and there is no constraint on edges from u to nodes in V. The
problem of deciding whether ¢’ is an m-clique is NP-hard.

Although it is NP-hard to identify new candidates, we have
proposed a pruning strategy to improve the efficiency in some
cases. The intuition of the proposed strategy is to utilize: 1)
the fact that each label-matched set in the current m-clique
is an embedding of M; and 2) the dominance relationship
between the new node and those nodes in the current m-
clique, to facilitate the checking of whether a label-matched set
containing the new node is an embedding. Next, we first show
Lemma 6.3 for checking whether a label-matched set is an
embedding, and then show Lemma 6.4 for checking whether
a node can be incorporated into the current m-clique.

Lemma 6.3: Given a motif M, an m-clique G[U] and a
node u € Vg \U, for any label-matched set H C (U U u)
containing u, if Jv € U\H, s.t., L(v) = L(u) and (N (u) N
H) 2 (M(v)N(H\w)), G[H]| is an embedding of M.

Example 6.1: For the graph G and motif M in Fig. 4
with node-labels being {“A”, “B”}, suppose we have found
an m-clique G[U] and would like to check whether the
label-matched set H = {uvs,v3,v5} containing u = wvg
is an embedding. Since there exists a node vy, such that
L(’Ul) = L(U6)=“A’ and (N(U(;)QH) = {1)371)5} D) (N(Ul)ﬂ
(H\vg)) = {v3}, by Lemma 6.3 we can claim that G[H] is
an embedding of M without any isomorphism checking.



(a) Graph G

(b) Motif M
Fig. 4: An example of pruning in candidate identification.

The above pruning can speed up the checking for a single
label-matched set. However, to check whether a node w can
be incorporated into the current m-clique G[U], we still need
to check label-matched sets one by one until a label-matched
set which is not an embedding is found. If G[U U u] is an
embedding, we need to check all label-matched sets. Since
the number of such sets is exponential, the computational cost
is extremely high. Next, we will discuss on how to reduce
the number of label-matched sets that need to be checked
significantly. Let us first introduce the concept of dominance.

Definition 6.1 (dominance): Given a graph G, an induced
subgraph G[U] and two nodes u € Vg \U and v € U with
L(u) = L(v), v is dominated by w if (M (v)NU) C (N (u)N
U). Let DY denote the set of nodes in U dominated by wu.

As shown in Fig. 4, we have DY, = {v3} and DY = {vs}.
Given an m-clique G[U] and a node u € Vi \U, for any label-
matched set H C U Uw containing u, if DY ¢ H, G[H] is an
embedding by Lemma 6.3. Let ¢ be the number of nodes in
M with label being L(u). For any H, we have |[HNDY| < t.
Hence, in some cases, D ¢ H is always true. We can
derive the following lemma based on the aforementioned
observations.

Lemma 6.4: Given a motif M, an m-clique G[U], a node
u € Vg\U, the dominance set Df[ , and the number ¢ of nodes
in M with label being L(u), G[u U U] is an m-clique iff:

1) 1+ |DY| > t; otherwise

2) for each label-matched set H C (U U u) containing u U

DY, G[H] is an embedding of M.

Example 6.2: For the graph G and motif M in Fig. 4,
suppose we have found an m-clique G[U] and would like to
check whether Gvg U U] and Glvz U U] are m-cliques. We
illustrate the checking based on Lemma 6.4 as follows.

Case 1 (u = vg). We first compute D = {vp} and t =
L. Since 14|DY| > t, Glvg U U] is an m-clique based on
Lemma 6.4 (1), without any isomorphism checking.

Case 2 (u = v7). We have Df,i = {vs} and ¢t = 2. Since
1+|D,UU7| <=t, by Lemma 6.4 (2), we only need to check all
label-matched set containing u = v7 and D = {vs} . Since
the subgraph induced by the label-matched set {va,vs,v7} is
not an embedding of M, G[v7 U U] is not an m-clique.

Based on the aforementioned lemmas, we propose an ad-
vanced algorithm, called mCliqueCheckPlus for node expan-
sion to replace its basic version mCliqueCheck. As shown in
Algorithm 5, we first compute DU and ¢. If 1 + |[DY| > ¢,
the algorithm returns true directly; otherwise, we test each
label-matched set H in G[u U U] containing u U DY one by
one. Particularly, we invoke a subgraph isomorphism algorithm

Algorithm 5: mCliqueCheckPlus(U, u)

1 DY «+ {v|v € U, L(v) = L(u), N (v) NU) C (N (u) NU)};
2 ¢ < the number of nodes in M with label being L(u);

3 if 1+ |DY| > t then

4 | return true;

5 else

6 for each label-matched set H in G[u U U] containing (u U DY)
do

7 if G[H] is not an embedding of M then

8 | return false;

9 return true;

(b) Motif M

' C
(a) Graph G

Fig. 5: A counter-example of trivially adapting the early stop pruning
of BK to GetMMC.

to check whether G[H] is an embedding. Once we find that
there exists a label-matched set which is not an embedding,
the algorithm returns false immediately. Otherwise, it returns
true since for all such H, G[H] is an embedding. The time
complexity of computing DY is O(|U| * [N (u)]) = O(n?).
Even though in the worst case, we still need to check all label-
matched sets in G[uUU], it works well in practice as we will
show in the evaluation section.

VII. EARLY STOP PRUNING

In this section, we focus on proposing a method to check
whether GetMMC can stop expanding early for the current
invocation. As show in Algorithm 4 (GetMMC), at the beginning
of the while loop, we select a node u from C without checking
whether there exists a node from NOT can be kept even when
C = 0 (so called early stop pruning in BK) due to the high
complexity. Given the sets U, C and NOT in GetMMC, by
analogy with the early stop pruning of BK (checking whether
Jv € NOT, N (v) 2 C), a simple adaptation is to check whether
Jv € NOT such that Vu € C, G[U U v U u] is an m-clique.
However, even though there exists such a node v, we cannot
ensure that v will be kept even when C = () since there may
exist some set C’ C C such that G[UUC'] is an m-clique while
G|U UC’ U] is not an m-clique. Following is an example.

Example 7.1: For the graph G and motif M in Fig. 5, let
U = {v1,v2,v3,v4}, C = {vg,v7} and NOT = {vs}. Although
both G[U U vg U ws] and G[U U vy U vs] are m-cliques, we
cannot stop to expand U, since G[U U wg U v7] is a maximal
m-clique which has not been reported. In other words, vs will
be removed from NOT after adding both vg and vy to U.

The above example shows that the early stop pruning of
BK cannot be adapted to solve the MMCE problem. Next,
let us go deeper by introducing a lemma about the sufficient
condition of early stop when searching maximal m-cliques.
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Algorithm 6: EarlyStopCheck(U, C, NOT)
1 for each v € NOT do

2 compute DYVC;

3 D'+ DYVC\¢;

4 t « the number of nodes in M with label being L(v);
5 if 1+ |D’| > t then

6 L return true;

7 return false;

Lemma 7.1: When invoking GetMMC(U, C,NOT), it will not
output anything if Jv € NOT,VC’ C C,

G[U U C'lis an m-clique = G[U U C" U v]is an m-clique.

Since the number of subsets of C is 2/°!, it costs O(2/¢I x )
time to check whether all subsets satisfy the condition men-
tioned in Lemma 7.1, where « is the time cost of checking
whether a subgraph is an m-clique (it is NP-hard as analyzed
in Section VI). Thus, it is too expensive to do this. Can we
find a way to do early stop pruning efficiently? We observe
that the dominance relationship introduced in Section VI can
also be used here. The following lemma shows that in some
cases, we can stop to expand remaining nodes in C.

Lemma 7.2: Given an m-clique G[U], a set C of nodes and
anode v ¢ (U UC), let DVYC be the set of nodes in U UC
dominated by v. Let D' = DYYC\C and t be the number of
nodes in M with label being L(v). If 1+ |D’| > t, we have,

vC' C C,G[UUC']is an m-clique = G[UUC'Uvlis an m-clique.

Notice that in Lemma 7.2 we use D’ rather than DY“C
directly. Because we need to ensure that for any C' C C, if
G[UUC] is an m-clique, G[U UC’ Uv] is an m-clique. Hence
any node in C should not be included into the dominance
set. As analyzed in Section VI, the dominance set DYC can
be computed in O(|U U C| * |N(v)|) time. Hence, we can
check whether 1 4 |D’| is larger than ¢ efficiently. Based on
Lemma 7.2, we devise the EarlyStopCheck algorithm as
shown in Algorithm 6. Essentially, we iteratively check all
nodes in NOT. The algorithm returns ¢rue if any such node is
detected. EarlyStopCheck can be invoked at the beginning of
the while loop in GetMMC. Specifically, we add the following
code before line 6 in GetMMC (Algorithm 4):

if EarlyStopCheck(U, C,NOT) is ¢true then return;

Once EarlyStopCheck returns true, we can stop searching
maximal m-cliques containing U since there must exist a node
v € NOT which will be kept even when C = ).

Interestingly, for the MCE problem which is a special
case of MMCE, i.e., G is an unlabelled graph and M is an
edge connecting two unlabelled nodes, it is easy to check
that EarlyStopCheck will return true iff Jv € NOT with
N (v) D C. It is consistent with the early stop pruning in BK.
Hence, the proposed early stop pruning for m-clique is also a
generalization of the one in BK.

VIII. DUPLICATION AVOIDANCE

As shown in Lemma 5.3, for each embedding S, the
GetMMC algorithm can find all maximal m-cliques of M in G
containing S. However, since a maximal m-clique may contain

several different embeddings, it can be found independently
from different embeddings. For instance, in the example shown
in Fig. 1, both embeddings {v1,vs,v5} and {v2,vs,v5} can
lead to the detection of the maximal m-clique G (Fig. 1d).

A naive way to avoid reporting duplicated maximal clique is
to store all reported results and check whether it has already
existed through sequential scanning. If the answer is yes, it
will not be reported. Otherwise, it will be added into the result
set. However, there are several drawbacks listed as follows: 1)
since the number of maximal m-cliques can be very large, it is
not efficient to check whether a new one has already existed
in the result set sequentially; 2) it can only avoid reporting
those duplicated maximal m-cliques at the final stage, i.e., the
computation cost of finding those results cannot be reduced.
It would be much better if we can detect early and avoid re-
computing those maximal m-cliques which have already been
reported in previous invocations of GetMMC.

In this section, an efficient algorithm is proposed to avoid
computing duplicated maximal m-cliques as early as possible.
In particular, we model our problem of avoiding duplicated
maximal m-clique generation as the subset query problem. Let
us first introduce the subset query problem.

Definition 8.1 (The Subset Query Problem): Let W be a set
of ordered symbols, S be a group of subsets of ¥, and U be a
subset of W. A subset query answers whether there exists an
element S € S such that S C U.

Let U be the set of node ids (ordered) of G, S be the
set of subgraph embeddings have been examined so far, i.e.,
all maximal m-cliques containing them have been generated,
and U be the current explored m-clique in GetMMC. We need
not continue extending U for computing maximal m-cliques
it 35 € S, S C U. Because all maximal m-cliques containing
S have already been generated. We use the set-trie structure
which is proposed in [32] for efficient subset query processing.

The set-trie is a tree composed of nodes tagged with indices
from 1 to n where n is the size of the alphabet (in our problem,
n is the number of nodes in (7). Essentially, the set-trie is a
trie tree [11] originally designed for efficient string matching
among a set of strings. However, the set-trie is designed to
support subset queries. The root node of the tree is tagged
with “{}” and its children can be the nodes tagged from 1 to
n. A node with tag ¢ can have children tagged with numbers
greater than ¢ (suppose we have a global order for all labels
and there is no duplicate element in all sets). In addition, each
node has a flag (“flag_last”) indicating whether it is the last
element in a set (the default value is false). At the beginning,
the tree 7 only includes the root node which represents an
empty set. Once an ordered set S comes, we update the tree
T by invoking the Insert function, as shown in Algorithm 7.
Note that different from the set-trie proposed in [32], we also
maintain the height of each node for further pruning during
the query processing. The height of the root node is set to 0.

Fig. 6 shows an example set-trie. A set is represented by a
path from root node to a node with flag_last set to true (red
nodes). In our problem, since all embeddings (sets) have the
same length, the flag last is set to ¢rue iff it is a leaf node.
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Fig. 6: An example set-trie for sets {1, 3, 5}, {1, 8, 9}, {2, 4, 6} and
{4, 5, 8}. Red nodes are the last element in some sets (flag_last=true).

Algorithm 7: Insert(S,7)

1 cur_node < T .root;

2 for each ordered element s € S do

3 if cur_node.HasChild(s) is false then

4 L cur_node.CreateChild(s, cur_node.height + 1);
5

6 cur_node.flag_last < true;

cur_node < cur_node.GetChild(s);

When a new subset query comes, based on the set-trie, the
authors of [32] proposed a Depth-First Search (DFS) algorithm
to check whether there exists a set S C U. In the following,
we introduce a Breath-First Search (BFS) algorithm as well as
a pruning strategy utilizing the property that all sets in 7 have
the same length (e.g., |Vs|, the number of nodes in M). Given
an ordered set U and a set-trie 7, Algorithm 8 returns true if
there exists a set S C U; otherwise returns false. Specifically,
we use active_set to store all nodes have been visited and
may refer to an “end node” of some set. At the beginning,
active_set only contains the root node (line 1). If U is not
empty, we examine ordered elements in U one by one. Once
active_set is empty, it returns false (lines 3-4). Otherwise,
for each ordered element u € U, we test whether the node in
active_set can be extended (lines 9-13) and whether it can
still be kept in the next round (lines 14-15, i.e., the pruning
by height). If a node with flag_last being true is visited, the
algorithm returns ¢rue (lines 11-12). Finally, the algorithm
returns false when U is empty.

As analysed in [32], the time cost of SubsetQueryProcess
is O(c* |T|), where |T| represents the size of 7 and c is a
constant which is up to 5 in practice. Next, we illustrate how
to avoid detecting duplicated maximal m-cliques by using the

Algorithm 8: SubsetQueryProcess(U,T)

1 active_set < {T.root};
2 while U # ) do

3 if active_set = () then

4 | return false;

5 pick the first element » from U’

6 U+ U\y;

7 next_active_set < (;

8 for each element v € active_set do
9 if v.HasChild(u) is true then

10 w +— v.GetChild(u);

1 if w.flag_last is true then
12 | return true;

13 next_active_set. Add(w);
14 if v.height + |U| > |Vjs| then
15 ]__ next_active_set.Add(v);
16 | active_set < nexl_active_set;

17 return false;

set-trie structure. We modify the META-Basic (Algorithm 2)

described in Section V as follows.
1) Initialize an empty set-trie 7 at the beginning (before line 1);
2) Insert the embedding S into 7 after invoking GetMMC(S, C, 0).

In addition, we add following codes before line 8 in GetMMC

(Algorithm 4):
if SubsetQueryProcess(U Uu,T) is true then
NOT < NOT U u;

continue;
If SubsetQueryProcess returns true, we need not to further
expand U U u since all maximal m-cliques containing U U u
have already been found.

So far, we have introduced all optimization strategies for
improving META-Basic, namely the advanced node expansion,
the early stop pruning and the duplication avoidance technique.
We name the algorithm with all these optimizations as META.

IX. EXPERIMENTS
A. Setup

Datasets. We evaluate the performance of the tested algo-
rithms on both real and synthetic graphs described as follows.
Real graphs. We evaluate the algorithms on five real graphs.
e DBLP: this is an HIN from DBLP [20], which contains 4
labels of nodes: 5,237 papers (P), 5,915 authors (A), 18 venues
(V), and 4,479 topics (T). The topics are terms extracted from
paper titles. There are 4 types of edges, i.e., A-P, V-P, T-P
and P-P. The total number of edges is 51,377 and the average
degree is 6.6.

e Amazon’: a product co-purchasing network with 1.78M
edges, 548K nodes, and 4 labels. Each node has a title and a
label that indicates its category (i.e., “Books”, “music CDs”,
“DVDs” and “VHS video tapes”). An edge between products x
and y means that  and y appear together in a single purchase.
e Reactome’: a publicly available bioinformatics database
from the European Bioinformatics Institute (EBI). Reactome is
a large, heterogeneous interaction network containing proteins,
biochemical reactions, and pathways from multiple biological
species [13]. We focus on “Homo Sapiens (human)”, which
consists of 54,397 nodes, 97,843 edges, with an average degree
of 3.6, and 15 distinct labels.

e Yeast [3]: a protein interaction network containing 12,519
edges and 3,112 nodes with an average degree of 8.1, and 71
labels.

o Instacart*: a co-purchasing network containing 12,770 edges,
5,240 nodes and 21 labels, where each edge between products
z and y means they have been purchased together more than
200 times. Each product (node) has a label that shows its
category, e.g., “personal care” and “beverages”.

Synthetic graphs. We also test our solutions on graphs gen-
erated by an open-sourced benchmark graph generator [22]°.
Because the generator can only produce unlabelled graphs, we
associate each node with a label randomly drawn from a set

Zhttp://snap.stanford.edu/data/index.html
3https://reactome.org/
“https://www.instacart.com/datasets/grocery-shopping-2017
Shttp://santo.fortunato.googlepages.com/benchmark.tgz
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TABLE II: Statistics of synthetic graphs (K=10%, M=10°).

Param I Description Values | Default

size #nodes 100K, 1M, 5M, 10M M
d average degree 4,8, 16, 32 8
|Z| #distinct labels 25, 50, 100, 200 50

of distinct labels. Table II summarizes the parameters used to
generate synthetic graphs.

Motifs. For case studies, we design the motifs for particular
purposes, whereas for efficiency experiments, we randomly
create motifs to test with different situations and get the
average performance. In particular, a motif is generated as a
connected subgraph of the data graph, by conducting random
walk on the data graph, as it was done in [3]. For performance
evaluation, we create motifs with size in {3, 4, 5,6, 7} (default
size is 4), because the size of motifs is bounded from 3 to 7
in real applications [14], [27], [40], [41]. For each data graph,
we create 5 motif sets, each of which contains 100 motifs of
the same size.

Algorithms. We have tested the following five variants of
META:

e META-Basic: Algorithm 2.

e META-ES: Algorithm 2 with Early Stop pruning only.

e META-ES-ANE: Algorithm 2 with both early stop pruning and
Advanced Node Expansion included.

e META-ES-DA: Algorithm 2 with both early stop pruning and
Duplication Avoidance included.

e META: Algorithm 2 with all pruning techniques, including
advanced node expansion, early stop pruning, and duplication
avoidance (i.e., our best algorithm).

Here we only report the results of one version of META (i.e.,

META-Basic) which does not employ early stop pruning. This
is because without this functionality, none of our solutions can
finish within 24 hours.
Experimental environment. All our algorithms are imple-
mented in C++. For subgraph isomorphism, we use VF3 [7],
which is a state-of-the-art subgraph isomorphism algorithm ©.
The experiments are conducted on a 16GB memory machine
with Intel(R) Core(TM) i7 CPU@2.3 GHz.

B. Case studies

Scenario 1: collaboration analysis. We perform two studies
on DBLP. As discussed in Section I, we have used META to
find groups of research collaborators (Fig. 2). Here we show
another example (Fig. 7), based on the motif in the form of
a path connecting three nodes (i.e., “Author-Paper-Topic™).
Intuitively, we wish to find all the papers written by authors
that share common topics. We discovered 37 maximal m-
cliques containing “Michael Stonebraker”, each with around
10 nodes and 14 edges on average. The maximal m-clique
displayed in Fig. 7 shows that Stonebraker and Cherniack co-
authored 4 papers, with two topics (“data” and “stream”) in
common. Fig. 7b shows the titles of these papers. Note that
although there are three groups of nodes in this network, we

Shttp://mivia.unisa.it/datasets/graph-database/vf3-library/
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Michael Stonebrakey, ]A‘ Data
g’ PEJ Id Title
l P1 | Operator Scheduling in a Data Stream Manager
g’ E']\ P2 | Aurora: A Data Stream Management System
Mitch Cherniack\\P3~ Stream [ p3 || oad Shedding in a Data Stream Manager
P EJ P4 | Linear Road: A Stream Data Management Benchmark

(a) a maximal m-clique (b) papers

Fig. 7: Case study 1 (collaboration analysis on DBLP).

cannot run a 3-partite clique query (and obtain the m-clique
here). This is because no edge exists between authors and
topics in the schema of DBLP.
Scenario 2: purchase analysis. On the Instacart co-
purchasing graph, we execute META with a 4-node motif shown
in Fig. 8b. This motif contains 3 types of grocery items
(i.e., “Snacks”, “Beverages” and “Breakfast”). The intuition
of this motif is to find out those beverages and breakfast
products which are frequently bought together with snacks
for better product promotion. We discovered 756 maximal m-
cliques in 7.9 seconds, each with around 11 nodes and 54
edges on average. Fig. 8a shows a maximal m-clique found
by META. This subgraph is highly connected, and likely reflects
the related items interesting to customers. The result can be
used in product promotion (e.g., selling at a discounted price
a bundle containing 2 snacks, 1 beverage, and 1 breakfast
product extracted from this maximal m-clique).
Scenario 3: biological analysis. We have conducted a case
study on the Reactome network. Biologists are interested in
analyzing biological complexes or events whose details are
not fully known, to help refine reactions/pathways that are
not well understood [12]. In this study, we examine whether
maximal m-cliques can help on this. We used a 4-node
motif (Fig. 9b), which contains 3 types of objects, namely
“Complex”, “Reaction”, and “BlackBoxEvent”. Specifically,
“Complex” denotes physical entities (i.e. proteins) formed by
the association of two or more other entities; “Reaction” refers
to bona fide biochemical reactions which have balanced input
and output entities; and “BlackBoxEvent” refers to reactions
or complex processes where details are not yet established.
Using our META algorithm, we discovered 42 maximal m-
cliques in 0.2 seconds, each with connected BlackBoxEvents,
complexes and reactions. On average, each maximal m-clique
contains around 6 nodes and 10 edges. Fig. 9a depicts the
largest maximal m-clique discovered which contains 1 Black-
BoxEvent, 2 complexes, and 42 reactions. This maximal m-
clique allows biologists to understand the BlackBoxEvent
(“CD209 activate GTPase RAS”) which has mechanisms
similar to those of reactions. They share the same inputs
or complexes. Maximal m-cliques can thus help biologists
to better understand these BlackBoxEvents by integrating
previously unconnected reactions and pathways.

C. Efficiency

We now compare the efficiency of META with its variants.
We vary the number of maximal m-cliques to be reported,
from 102 to 10* with 10® being the default, as it was done
n [15], [38] for subgraph isomorphism enumeration. We treat
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the running time of a query as infinite (Inf) if the query set
cannot finished in 24 hours.

Effect of motif size. We examine the impact of motif sizes
on the performance of META. Each set of motifs with the
same size contains 100 motif instances. Each query is run
3 times, and we report the average running time of these 100
queries in Fig. 10, on real graphs. We observe the following.
First, the running time of META-Basic is “Inf”. Second, META-
ES (with early stop pruning) can finish within the time limit
for most cases, thus showing the importance of early stop
pruning. Third, both META-ES-ANE and META-ES-DA perform
better than META-ES, because both advanced node expansion
and duplication avoidance can further improve the efficiency.
Fourth, META, which includes all pruning techniques, performs
the best; it is at least 3 orders of magnitude faster than
META-Basic. Fifth, the running time of META increases with
the motif size in general. Because the cost of checking the
maximality of an m-clique increases with the motif size. We
conclude that our pruning techniques for node expansion,
early stop and duplication avoidance effectively enhance the
performance of META.

Effect of the number of maximal m-cliques. Now we eval-
uate the effect of the number of maximal m-cliques reported
on real graphs. We vary the number of maximal m-cliques
reported from 102 to 10%. Fig. 11 shows the average running
time of the META algorithm on different graphs over different
motif sizes. As expected, the processing time increases when
more results are reported. Furthermore, the increment of run-
ning time is near linear to the increasing number of maximal
m-cliques reported in general.

Scalability testing. We test the scalability of META on syn-

TABLE III: Scalability testing of META (motif size=4, in seconds)

size | 100K | IM | 5M | 10M
Time [ 005 | 08 | 279 | 4.68
d 4 8 16 32
Time | 039 | 08 | 092 | 1.0l
1= 25 50 | 100 | 200
Time | 1.05 | 08 | 0.18 [ 0.16

thetic graphs by varying size (default 1M), d (default 8), and
|| (default 50). As shown in Table III, META is highly scalable
on large graphs (e.g., it only costs 4.68 seconds on the 10M-
node graph). We observe that the processing time of META
increases with size. The larger the graph, the larger is the
search space. Also, the processing time of META increases with
the average degree d. When d is larger, the graph has more
edges, thereby increasing the running time of META. Finally,
, due to

fewer embeddings and maximal m-cliques.

X. CONCLUSIONS

In this paper, we propose the m-clique, which incorporates
motifs in a clique for motif-based analysis on HINs. We also
formulate the maximal m-clique enumeration (MMCE) prob-
lem. To tackle this problem, we propose the META algorithm,
which employs novel pruning strategies for node expansion
and early stop pruning, as well as the duplication avoidance
strategy. Our experiments show that META is highly effective
and efficient. In particular, for effectiveness, three case studies
in different domains demonstrate the application scenarios
of maximal m-cliques. For efficiency, META achieves several
orders of magnitude improvement in performance compared
with the basic version, which is attributed to our powerful
optimization techniques. In the future, we will extend META
to handle more rich information on a graph (e.g., nodes
with multiple attributes or labels, and edges with directions
and labels). We will also study how META can be run in a
distributed and parallel computing environment.
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