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Abstract—Customers may interact with a retail store through
many channels. Technology now makes it is possible to track
customer behavior across channels. We propose a system where
items are recommended based on learning channel specific
similarities between customers and items. This is done by treating
recommendations as a learning to rank problem and minimizing
rank loss with surrogate loss functions. We build our system using
a real world multi-channel data set – online browse and purchase,
and in-store purchase – from a retail chain. The results show that
using learned similarity scores improves the performance of the
system over scores generated using standard cosine similarity
measures. Finally, using our learning to rank formulation we
introduce a product scoring system to measure consumption
behavior.

I. INTRODUCTION

Customers may interact with a retail store through many
channels — in-store, online, social media, email campaigns,
etc. With the right infrastructure in place, it is now possible to
track user behavior across channels. What customers purchase
online for instance may prove to be rich data source to predict
their in-store purchases. In this paper, we report on the design
and performance of a system which uses data from three
channels – online browse and purchase, and in-store purchase
data – to recommend products.

Our system is a content based recommendation system
which employs the pair-wise approach to the learning to rank
problem. The ranking function is learned from the data by
minimizing rank loss, which equals 1-AUC, the complement of
the area under the ROC curve. The baseline model we choose
to evaluate our system against is one where channel-specific
scores are computed using the standard cosine similarity. In
both our system and the baseline model, channel specific
similarity scores induce a ranking on the set of items for each
user. These rankings are aggregated by summing the scores
from each of the channels. Top-k item scores determine the
recommendations for a user.

We proceed to enumerate the contributions of this paper.
Firstly, from an empirical stand-point, using a multi-channel
marketing dataset, we demonstrate that learning similarity

measures improves AUC over using the standard cosine sim-
ilarity. In addition, we evaluate the performance of several
loss functions in our optimization framework. Next, from a
theoretical perspective, the application of similarity learning
and transfer learning techniques to multi-channel data is novel.
Lastly, we devise a product scoring system which measures
how products are consumed in a multi-channel scenario.

In Section II we discuss literature which has inspired the
ideas in this paper. This is followed by the problem definition.
Section IV introduces our similarity learning optimization
algorithm and Section V describes our experimental setup and
showcases results. Section VI introduces our product scoring
system.

II. RELATED WORK

Similarity learning has been studied in many contexts
including face verification and music recommendation as we
discuss below. In [15], the authors use cosine similarity as
a measure of the distance between two face vectors for the
problem of face verification, where the task is to predict
whether two images are from the same person. Their method
learns a transformation matrix from the training data so that
cosine similarity performs well in the transformed space. We
employ this idea in our system. The paper [4] formulates
the problem of unconstrained face verification as a similarity
metric learning convex optimization problem.

McFee et al. have worked on learning to rank from a
metric and similarity learning perspective [12], [13] with the
latter being applied to content based music recommendation.
Recently, a multiple kernel based similarity learning method
for multi-modal data was described in [14].

Our work relates to the problem of rank aggregation as
it creates a consensus ranking of items for each user by
aggregating rankings from multiple channel via similarity
scores. The reader might consider reading the paper [8] to
learn about rank aggregation and its connection to the standard
problem of voting.

The problem of learning from multiple sources has also
been well studied from a machine learning perspective. Blum
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and Mitchell [3] first proposed a framework for learning from
unlabeled web data. Similarly, transfer learning addresses the
problem of transferring information from a richer, labeled
domain to a domain with relatively less labels. A survey of
these methods can be found in [16]. Specifically, for product
recommendation, algorithms based on transfer learning have
been explored in [11], [18], [17].

The technique of minimizing a convex surrogate of a 0−1
loss function to make the optimization algorithm computation-
ally efficient is a popular one in machine learning [2]. The
specific problem of optimizing AUC has gained the research
community’s attention following recent work on rank risk and
rank regret bounds [9].

Our approach which is immensely inspired by the work of
[10], where the authors approach the problem of recommenda-
tions via colloborative ranking by assuming the rating matrix
is locally low-rank within certain neighborhoods of the metric
space defined by (user, item) pairs. They combine an approach
for local low-rank approximation based on the Frobenius
norm with a general empirical risk minimization for ranking
losses using several loss functions. In contrast, we investigate
a content-based ranking system for recommendation, where
similarities are learned from the data to minimize pairwise
ranking loss. Related work on this topic includes the paper
[1] by Balakrishnan et al., where the authors optimize for
the nDCG metric using point-wise and pair-wise methods
techniques from the learning to rank literature.

We recall that ROC curves are generally used to present
accuracy for binary decision problems, however, for highly
skewed datasets, Precision-Recall (PR) curves give a more
informative picture of an algorithm’s performance [6]. Fur-
thermore, algorithms that optimize the area under the ROC
curve (AUC) are not guaranteed to optimize the area under
the PR curve. We believe it is an open problem on how our
approach can be adapted to the PR curve.

III. PROBLEM DEFINITION

We recall the notation introduced in [10] and adapt it to
our context. Let the set of users and items be denoted by U

and I respectively. Let each user and each item being be
represented as vectors in R

d as is typical in the content based
recommendation setting. A similarity function f : U ×I → R

returns a real-valued score indicating how similar a user is
to an item, with a score higher in value indicating greater
similarity between the user-item pair than one which is not.
Restricting f to a specific user u induces a preference function
on the set of items, that is, f(u, i) > f(u, j) implies u prefers
item i over item j. The function f is learned from the data
such that it minimizes the risk function

E (f) =
∑

u∈U

∑

i,j∈I

L (f(u, i)− f(u, j),Mu,i −Mu,j), (1)

where L is a loss function and Mx,y denotes whether
user x consumed item y in one channel. We will soon extend
our exposition to cover the multi-channel scenario. A popular
choice for L is the 0 − 1 loss function, which counts sign

disagreements between the arguments of L . We introduce Δ
notation to denote differences of similarity function values.

Δf(x, y, z) = f(x, y)− f(x, z) (2)

Let I +
u denote the set of items consumed by u and

I −

u denote the complement of I +
u with respect to I .

The activity of consumption will depend on the interaction
channel being discussed, namely product purchases when in-
store (IP) and online purchase (OP) channels are considered
and product browsing behavior when online browse channel
(OB) is analyzed.

To extend our discussion to a multi-channel setting, we
investigate a family of risk functions. The formulation of
all of these functions is driven by the idea that the item
recommendations for a particular user in our system are
determined by a weighted sum of the user’s channel similarity
scores. This makes us restrict the function f to be

f = wIPfIP + wOPfOP + wOBfOB, (3)

where the weights impose a preference order on the channel
similarity scores. The channel specific fc’s are similar to f in
that they take a user u and an item i as arguments. The user
vector u refers to the user’s consumption activity in channel c.
We proceed to formulate three risk functions, namely MLSI,
MLST and MLSH. The abbreviation MLS stands for Multi-
channel Similarity Learning and the letters I, T and H stand
for Individual, Total and Hybrid. Since the objective of the
risk functions is maximizing AUC in a target channel, this can
be identified as a special case of transfer learning [16]. In this
case, we simply force different channels to share the target
label, as all the channels have the same feature space.

We refer to the sets I +
u and I −

u as label sets since they
partition the set of items into consumed and not consumed
items for each user. In this paper, the label sets primarily refer
to consumption activity in the target channel, which is in-store
purchase (IP).

The choices made so far simplify Eq. (1) to the following
form for MLSI function

EMLSI(fIP, fOP, fOB) =
∑

u∈U

∑

c

∑

i∈I
+
u

∑

j∈I
−

u

Δfc(u,i,j)<0,

(4)
where c is summed over the channels IP, OP, OB and we
suppress channel notation from the item consumption sets.

The MLST function look like

EMLST (fIP, fOP, fOB) =
∑

u∈U

∑

i∈I
+
u

∑

j∈I
−

u

Δf(u,i,j)<0. (5)

The MLST formulation does not consider out-of-order
instances of consumed and not consumed items within each
channel for each user. To address this situation, we introduce
a hybrid function MLSH, which is defined as

EMLSH(fIP, fOP, fOB) =
∑

u,c,i,j

Δfc(u,i,j)<0

+
∑

u,i,j

Δf(u,i,j)<0

(6)
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Fig. 1. Loss functions

In the above equation u, i, j are summed over the same sets
as before; we abbreviate notation for brevity.

The problem we seek to solve is to find optimal ranking
functions for each channel which minimizes these risk func-
tions. The functions E are computationally hard to optimize for
large problem instances due to their discrete nature. Instead,
we replace the indicator function z<0 with surrogate loss
functions. This opens the door for numerical optimization
techniques which we investigate in subsequent sections. The
loss functions we consider in this paper are

• sigmoid loss

�φ(z) =
2

1 + ez
, (7)

• hinge loss

�+(z) = max(1− z, 0), (8)

• logistic loss

�log(z) = log2(1 + e−z), (9)

• exponential loss

�exp(z) = e−z, (10)

• sigmoid-β loss

�φβ
(z) =

1

1 + eβz
, (11)

These loss functions are convex in z [2], [5], except for
the sigmoid functions. The sigmoid-β function is technically
not a surrogate loss function, we consider it for evaluation as
for large values of β it approximates the 0− 1 loss function.
Though hinge loss is a popular choice for loss function from
a efficiency and performance perspective [19], a priori it is
unclear which loss function will give the best results for a
given dataset. Therefore we evaluate all these losses in our
experiments.

IV. SIMILARITY LEARNING

In this section, we introduce a specific family of similarity
functions which our system employs. Let users and items be
represented by vectors in R

d. Let g be a function defined for a
user x, item y, matrix A and item bias vector b, which returns
the similarity between x and y and given by

g(x, y,A, b) = sim(x, y,A) +
1

1 + e−by
, (12)

where by is the coordinate of b corresponding to item y. We
pass the bias term through the sigmoid function to constrain
its contribution. The item bias term captures the popularity of
the item. As user bias terms cancel out in our risk functions
E , there is no bias term for users.

We extend the standard cosine similarity, which will take
place of the sim function described above. Let Rd → R

p be a
linear transformation defined by matrix A ∈ R

p×d. Consider
the function

simcs(x, y,A) =
xTATAy√

xTATAx
√
yTATAy

. (13)

To treat the space of users and items separately, we
introduce a variation of the above function, which transforms
user and item vectors differently.

simcs(x, y,A,C) =
xTATCy√

xTATAx
√
yTCTCy

(14)

The function g will play the role of function fc introduced
in the previous section and the matrices A and C and the
bias vector for each channel will be learned from the data by
optimizing empirical risk.

A. Optimization

Let J� denote the function obtained by replacing the
indicator functions in the risk functions E by the loss function
�. There are regularization terms added to the function J�
to prevent overfitting. The optimization problem is to find
matrices, and vectors Ac, Cc, bc and wc for channels IP, OP
and OB such that (dropping the channel subscript c)

Θ = (A,C, b, w) = argmin
A,C,b,w

J�(A,C, b, w)

+λAΩ[A] + λCΩ[C] + λbΩ[b] + λwΩ[w],
(15)

where λ ∈ R are the regularization parameters and Ω[.] is
an appropriate matrix norm such as �F the Frobenius matrix
norm. For an arbitrary matrix A ∈ R

p×d, it is defined as

‖A‖F =

p∑

s=1

d∑

t=1

A2
st (16)

B. Algorithm

To learn matrices A,C and the bias vector b, the system
performs a stochastic gradient descent (SGD) on the function
J�. To implement SGD we make a minor change by replacing
the set I −

u with the following set

I
∗

u,i = {j ∈ Iu | B(u, i) > B(u, j)}. (17)
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where i ∈ I +
u as defined in the risk functions E and B is the

consumption frequency matrix. This modification ensures that
there is an ordering when consumed items are compared to
each other. This alternative cost function minimizes the sum
of ranks of the bought items in the recommended list, with
items purchased more frequently having a higher rank than
items purchased less frequently with highest rank being 0.

We exhibit some of the details required to perform the
optimization in the special case when EMSL Eq. (4), � = �φ
the sigmoid loss function and A = AIP is the matrix A for IP
channel. Then the gradient of J with respect to A is given by

∇AJ�φ(A) =
∑

u,i,j

∇A�φ(Δf(u, i, j)) (18)

Further

∇A�φ(Δf(u, i, j)) = −�φ(Δf(u, i, j))2·
eΔf(u,i,j) · (∇Af(u, i)−∇Af(u, j)).

(19)

The last term of Eq. (19) is determined by applying
the quotient rule. Let v1 and v2 denote the numerator and
denominator of simcs, then their respective gradients with
respect to A are given by

∇Av1(x, y,A) = A(xyT + yxT ) (20)

∇Av2(x, y,A) =

√
yTATAy√
xTATAx

AxxT +

√
xTATAx√
yTATAy

AyyT (21)

The gradient computation with respect to C follows a
similar procedure and with respect to b is simpler.

Algorithm 1 SGD iteration

1: function SGD-ITERATION(U , I , Θ, w, cost)
2: for u in U do
3: for i in I +

u do
4: for c in { IP, OP, OB } do
5: Compute fc(u, i), ∇Θfc(u, i)

6: for j in I ∗

u,i do
7: for c in { IP, OP, OB } do
8: Compute fc(u, j), ∇Θfc(u, j)

9: Update J�
10: Update Θ
11: Normalize w
12: Update Θ, w � Regularization component
13: Normalize w
14: Update cost
15: return Θ, w, cost

Algorithm 1 describes the structure of the optimization
routine for our risk functions. The initial parameters to the
algorithm are randomly chosen to be between 0 and 1. The
weight vector w in Steps 11 and 13 of the algorithm is
normalized such that the absolute values of the channel weights
sum to 1.

C. Time Complexity

Each iteration of stochastic gradient descent described in
Algorithm 1 requires

O(
∑

u

#I
+
u ·#I

−

u )

number of update operations.

There are a couple of techniques which will practically
speed up the optimization. We merely mention them as we
have not extensively investigated their impact on performance
of our system. First, items which have never been purchased
in the training phase for each channel can be filtered out. One
choice for bias term for these items could be the average item
bias. Implementing this technique requires some amount of
book-keeping as training is restricted to certain set of items
while testing is not. Second, the two for loops which iterate
over each channel in Algorithm 1 can be parallelized as each
channel computation is independent of the others. Third, given
that a user u consumes only a few items the for loop in line
6 of the above algorithm could iterate over a random sample
of I −

u rather the iterating over the entire set.

V. EXPERIMENT

We describe our experimental setup and evaluate our
system’s performance in this section. The regularization pa-
rameters λA, λC , λb and λw from Eq. (15) are equal to λ,
which takes on values 0.0011, 0.0031 and 0.0101. In the SGD
procedure, the learning rate for matrices A,C and b is α and
the rate for the weight vector w is 0.01 · α. The parameter α
in the iteration number t of SGD is equal to e−2·t. The SGD
procedure terminates when the absolute value of the difference
in cost between iterations drops below 0.001.

A. Dataset

Our dataset is from a retail chain with physical stores
and an E-commerce website. The data encompasses customer
transactions over 225 days period. The dataset consists of
around 256 million transactions, distributed over about 2 mil-
lion customers. All the items in the dataset can be aggregated
into 700 item categories. All the items in a particular category
share the same features.

Our choice of category is driven by the following factors:
the category has a large number of items, the items are bought
frequently in the dataset, the purchase cycle of items is short
and items have good descriptions so that features could be
extracted based on the item descriptions.

We narrowed our dataset to 10 such categories consisting
of about 30 million transactions. We showcase results for one
such category which has about 1000 items and a filtered set
of 2000 customers with the average size of the set I +

u being
6.29 and standard deviation being 4.74 for the IP channel.

B. Item and User profiles

The item descriptions consist of the following features:
Price – numeric, Brand – categorical, Color and other category
specific features, which were both numeric and categorical.
All these features are converted into binary values resulting
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in items being represented by boolean vectors in R
d, where

d = 418. This is done by introducing a feature for all pos-
sible values of categorical variables and binning the numeric
variables. This boolean vector is referred to as item profile.

For each user in the dataset, user profile is generated by
aggregating the boolean vectors of items consumed (purchased
or bought) by that user, and the time of consumption is dictates
whether the vector is being generated for the purpose of
training or testing. This is discussed in the next subsection.

C. Train and Test Set Generation

The dataset of around 225 days is divided into two parts
: two-thirds for training and one-third for testing. Further, the
training set spanning over first 150 days is subdivided into
two subparts — the first 125 days are used to create the user
profile vectors and eventually similarities. The remaining 25
days are used to create a binary vector to indicate purchase
of the item by the user in that period, and this acts as the
target variable. Similarly for the test set, the first 200 days
were used to create the user profile, while the remaining 25
days were used to create the target variable. Our train and test
sets have 880 users each. Each SGD computation selects a
random subset of the customers of size 200 as the training set.

D. Evaluation Metrics

Given that we view the problem of recommendation as
a learning to ranking problem, ranking metrics are a natural
choice for the purpose of evaluation of the system [13]. In our
context, relevance is a binary function indicating whether the
item was purchased or not and @k denotes a recommendation
list consisting of items with the first k ranks. We set k = 10
borrowing from search engine literature. In the results sections,
the following metrics are presented: AUC is the probability that
a randomly chosen item purchased in-store is ranked higher
than one which is not, Recall@k is the fraction of relevant
items that are recommended, Precision@k is the fraction of
recommended items that are relevant, nDCG@k is a score
based on the graded relevance of recommended items and
Average Precision (AVEP) is the Precision@n of a ranking
of items, averaged over all positions n of purchased items.
The tables showcase these metrics averaged over the users.

Given that our approach is to minimize rank loss, AUC
results are of primary importance in our experiments. From the
perspective of recommendation systems, recall is also a metric
of importance. We include nDCG and AVEP results as they are
standard metrics in the ranking literature. We highlight the best
AUC result in each of our experiments in the next subsection.

E. Baseline Results

Table I displays our baseline results where channel-specific
scores computed using standard cosine similarity are summed
and the top-k scores determine the recommendations for IP.
This is done for individual and combinations of channels.
The table gives evidence to the hypothesis that increasing the
number of channel similarity scores does not imply an increase
in the evaluation metrics as is evident when moving from 2
channels (IP, OP) to 3 channels (IP, OP, OB). This is due to
the OB channel profiles being sparse and not being a good
source of prediction.

We note that to our knowledge there are no publicly
available multi-channel datasets with which we can evaluate
our system; this limits the results that we can publicly share.

F. Our Results

We now proceed to showcase the results of our approach.
The label sets I +

u and I −

u referenced in Eqs. 4, 5 and 6
(MLSI, MLST and MLSH) refer to consumption activity in
the in-store purchase (IP) channel. These labels are from two
durations: the first 125 days and days 126-150 in our dataset.
We refer to the first scenario as IP-1-125 and the second
scenario as IP-126-150.

Tables II and III provide results for MLSH and MLST with
labels from IP-1-125 using the similarity function in Eq. 13
with λ = 0.0011. Given that a single matrix A is being learned
for each channel, the costs in the associated optimization are
extremely high and the SGD procedure takes a long time to
terminate. These tables suggest that the results are around the
three channel baseline AUC value implying tranforming users
and items separately by learning matrices A and C for the
similarity function in Eq. 14 is a better approach as later tables
will demonstrate.

Tables IV and V arrange data for MLSH with labels from
IP-126-150 and IP-1-125 respectively. For these tables we
compute evaluation metrics for selective combinations of the
regularization parameter λ = 0.0011, 0.0031 and 0.0101 and
values of p = 5, 15 and 25. The AUC results of the latter
table are around the AUC value for the three channel baseline
(0.8458) from Table I while the larger duration label set IP-1-
125 has significantly better AUC values.

Tables VI, VII, VIII contrast the models MLSH, MLST
and MLSI using three channels scores (IP, OP, and OB) and
using two channel scores (IP and OP). In each of these tables
rows with same values of p and loss l use the same set
of customers and are hence comparable. Consistent with the
baseline AUC results, two channel AUC results fare better
than three channel ones. It is difficult to differentiate the
performance of these models and therefore a need to perform
more theoretical analysis and experiments.

The best AUC result of 0.9301 in our experiments is
obtained by the MLSI function with labels from the first
125 day period (Table IX) using scores from the IP and
OP channels. This is a significant improvement over the two
channel baseline AUC value of 0.8508 from Table I. In this
experiment labels do not come from the target channel as
in other experiment but from the respective channels. One
might consider a second phase of learning to make the results
sensitive to the target channel.

In Table X we compare results for one versus two channels
with labels from the IP-1-125 duration. The first subtable refers
using IP channel scores, where the three risk functions are
equivalent. The subtables which follow are for MLSI, MLST
and MLSH. This table is visualized in Figure 2. The number of
customers chosen for these results were 100. This table shows
that on average using two channels of IP and OP is better than
merely using one channel of IP for MLST and MLSH but not
for MLSI.
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Channels AUC Recall Precision nDCG AVEP

IP 0.8355 0.3932 0.1306 0.3331 0.2558
OP 0.8106 0.3732 0.1220 0.2882 0.2161
OB 0.3075 0.0968 0.0299 0.0784 0.0520

IP, OP 0.8508 0.4022 0.1332 0.3385 0.2632
IP, OP, OB 0.8458 0.3819 0.1255 0.3181 0.2440

TABLE I. RESULTS FOR STANDARD COSINE CHANNELS FOR COMBINATIONS OF CHANNELS

p � λ AUC Recall Precision nDCG AVEP wIP wOP wOB

5 φ 0.0011 0.8472 0.1709 0.056 0.1151 0.0679 0.3346 0.3332 0.3322
5 + 0.0011 0.8349 0.1686 0.06 0.1019 0.0543 0.3345 0.3797 0.2858
5 log 0.0011 0.8453 0.1979 0.0665 0.1423 0.0891 0.3321 0.3334 0.3345
5 φ1 0.0011 0.8119 0.0962 0.0306 0.0692 0.0422 0.2703 0.2718 0.4579

TABLE II. RESULTS FOR MLSH WITH LABELS FROM IP-1-125 AND A=C WITH SCORES FROM THE IP, OP AND OB CHANNELS

p � λ AUC Recall Precision nDCG AVEP wIP wOP wOB

5 φ 0.0011 0.8766 0.1983 0.0682 0.1444 0.0892 0.3393 0.3093 0.3514
5 + 0.0011 0.8271 0.1024 0.032 0.0588 0.0266 0.3807 0.3744 0.2449
5 log 0.0011 0.8437 0.194 0.0594 0.1465 0.0911 0.2874 0.381 0.3316
5 exp 0.0011 0.8529 0.2206 0.0735 0.1571 0.0988 0.3376 0.6036 0.0589
5 φ1 0.0011 0.8671 0.2277 0.0763 0.1649 0.1061 0.3091 0.3699 0.3209

TABLE III. RESULTS FOR MLST WITH LABELS FROM IP-1-125 AND A=C WITH SCORES FROM THE IP, OP AND OB CHANNELS

p � λ AUC Recall Precision nDCG AVEP wIP wOP wOB

5 φ 0.0011 0.8553 0.1541 0.0611 0.1084 0.0694 0.3343 0.3392 0.3266
5 φ 0.0031 0.825 0.1588 0.0531 0.1036 0.0609 0.3591 0.329 0.3119
5 φ 0.0101 0.8435 0.2158 0.0638 0.1527 0.0907 0.3264 0.3263 0.3474
5 + 0.0011 0.8482 0.194 0.0618 0.1248 0.0712 0.2949 0.3102 0.3949
5 + 0.0031 0.8557 0.1888 0.0697 0.1171 0.0642 0.3509 0.3788 0.2702
5 + 0.0101 0.8382 0.1139 0.0441 0.0741 0.0409 0.3423 0.3096 0.3482
5 log 0.0011 0.8622 0.2002 0.0638 0.1281 0.0737 0.4147 0.2847 0.3006
5 log 0.0031 0.8488 0.1257 0.0478 0.0746 0.0365 0.31 0.2834 0.4066
5 log 0.0101 0.8366 0.0896 0.0383 0.062 0.0331 0.3433 0.3527 0.304
5 exp 0.0011 0.8606 0.1158 0.0468 0.0938 0.0591 0.337 0.3133 0.3497
5 exp 0.0031 0.8324 0.1055 0.0392 0.0691 0.0337 0.3604 0.3068 0.3328
5 exp 0.0101 0.8383 0.1588 0.0545 0.1024 0.0536 0.3124 0.2841 0.4035
5 φ1 0.0011 0.8418 0.1907 0.0616 0.1248 0.0711 0.3161 0.3434 0.3404
5 φ1 0.0031 0.8522 0.1925 0.0544 0.1389 0.0842 0.3244 0.3442 0.3314
5 φ1 0.0101 0.8327 0.1287 0.0519 0.0863 0.0448 0.2619 0.367 0.3711
5 φ10 0.0011 0.8513 0.1875 0.0617 0.1024 0.0479 0.1478 0.3833 0.4689
5 φ10 0.0031 0.8413 0.1889 0.0615 0.1466 0.0912 0.2779 0.3588 0.3633
5 φ10 0.0101 0.8809 0.2113 0.0749 0.1319 0.0692 0.4069 0.3385 0.2546

15 φ 0.0011 0.8292 0.191 0.0644 0.1249 0.0767 0.3437 0.3422 0.3142
15 + 0.0011 0.8329 0.1776 0.0631 0.1092 0.0597 0.3851 0.3315 0.2835
15 log 0.0011 0.8265 0.1835 0.0616 0.1098 0.0605 0.3695 0.276 0.3544
15 exp 0.0011 0.8597 0.1658 0.0616 0.1127 0.069 0.3178 0.332 0.3501
15 φ1 0.0011 0.8708 0.2247 0.0726 0.1427 0.0798 0.3326 0.3407 0.3267
15 φ10 0.0011 0.84 0.1662 0.057 0.0949 0.0468 0.3336 0.3465 0.32

25 φ 0.0011 0.823 0.1954 0.0659 0.1363 0.0794 0.3365 0.3248 0.3388
25 + 0.0011 0.8584 0.1626 0.0601 0.1114 0.0684 0.3697 0.2982 0.3321
25 log 0.0011 0.8322 0.1733 0.0613 0.1103 0.0575 0.3224 0.3691 0.3085
25 exp 0.0011 0.8587 0.2119 0.0689 0.1472 0.0887 0.3248 0.3536 0.3215

TABLE IV. RESULTS FOR MLSH WITH LABELS FROM IP-126-150 WITH SCORES FROM THE IP, OP AND OB CHANNELS

Fig. 2. AUC values across various losses for one versus two channels

VI. PRODUCT QUOTIENT

Retailers and publishers would like to score items in their
inventory to understand the significance of each item to their
business from a consumption perspective. These items could

be products or articles and consumption could mean purchase
or browse behavior depending on the context. For the purpose
of this discussion, we will specialize to the retail scenario. We
propose two natural notions of a product’s significance:

• Self-promotion value captures the effect of the sale of
the product on itself. This can be viewed as repeat
purchase propensity of the item.

• Cross-promotion value influences the sale of other
products. This quantifies the cross sell opportunity of
the product.

These values can be viewed as the product’s equity or
the collective valuation of the product by consumers. Using
these product values to quantify the store’s performance is
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p � λ AUC Recall Precision nDCG AVEP wIP wOP wOB

5 φ 0.0011 0.8662 0.1915 0.0677 0.1393 0.0889 0.3343 0.3392 0.3266
5 φ 0.0031 0.856 0.1796 0.0634 0.1192 0.0697 0.3591 0.329 0.3119
5 φ 0.0101 0.8588 0.1478 0.0524 0.1 0.0562 0.3264 0.3263 0.3474
5 + 0.0011 0.8583 0.1494 0.0502 0.0868 0.047 0.2949 0.3102 0.3949
5 + 0.0031 0.8662 0.1948 0.0643 0.1225 0.071 0.3509 0.3788 0.2702
5 + 0.0101 0.8683 0.1751 0.0677 0.122 0.0724 0.3423 0.3096 0.3482
5 log 0.0011 0.8644 0.1565 0.0573 0.0942 0.0468 0.4147 0.2847 0.3006
5 log 0.0031 0.8659 0.1522 0.0602 0.0953 0.0575 0.31 0.2834 0.4066
5 log 0.0101 0.8585 0.1331 0.0503 0.0955 0.0586 0.3433 0.3527 0.304
5 exp 0.0011 0.8501 0.0898 0.0325 0.0485 0.0207 0.337 0.3133 0.3497
5 exp 0.0031 0.8761 0.1333 0.0495 0.0802 0.0381 0.3604 0.3068 0.3328
5 exp 0.0101 0.898 0.2674 0.083 0.1837 0.1158 0.3124 0.2841 0.4035
5 φ1 0.0011 0.8817 0.2492 0.0781 0.1637 0.1002 0.3161 0.3434 0.3404
5 φ1 0.0031 0.8726 0.1664 0.0603 0.1107 0.0608 0.3244 0.3442 0.3314
5 φ1 0.0101 0.864 0.1548 0.0534 0.0934 0.0489 0.2619 0.367 0.3711
5 φ10 0.0011 0.9039 0.2652 0.092 0.1793 0.1084 0.1478 0.3833 0.4689
5 φ10 0.0031 0.8672 0.1666 0.0598 0.1146 0.0718 0.2779 0.3588 0.3633
5 φ10 0.0101 0.8872 0.18 0.0709 0.1225 0.073 0.4069 0.3385 0.2546

15 φ 0.0011 0.8912 0.2362 0.0759 0.1598 0.0989 0.3437 0.3422 0.3142
15 + 0.0011 0.8555 0.0848 0.0376 0.0512 0.024 0.3851 0.3315 0.2835
15 log 0.0011 0.8955 0.2335 0.0764 0.1503 0.0867 0.3695 0.276 0.3544
15 exp 0.0011 0.8842 0.2227 0.0664 0.1492 0.0844 0.3178 0.332 0.3501
15 φ1 0.0011 0.8853 0.2117 0.0747 0.1438 0.0931 0.3326 0.3407 0.3267
15 φ10 0.0011 0.8934 0.2743 0.0901 0.1789 0.1184 0.3336 0.3465 0.32

25 φ 0.0011 0.8747 0.2303 0.0768 0.1474 0.0855 0.3365 0.3248 0.3388
25 + 0.0011 0.8993 0.2528 0.0808 0.1623 0.1024 0.3697 0.2982 0.3321
25 log 0.0011 0.8911 0.2853 0.0948 0.185 0.1139 0.3224 0.3691 0.3085
25 exp 0.0011 0.89 0.1708 0.0642 0.1156 0.063 0.3248 0.3536 0.3215

TABLE V. RESULTS FOR MLSH WITH LABELS FROM IP-1-125 WITH SCORES FROM THE IP, OP AND OB CHANNELS

p � λ AUC Recall Precision nDCG AVEP wIP wOP wOB

5 φ 0.0011 0.8597 0.2143 0.0642 0.1456 0.0856 0.3149 0.3567 0.3283
5 + 0.0011 0.8574 0.1317 0.0535 0.0911 0.0555 0.3133 0.3594 0.3273
5 log 0.0011 0.8774 0.2145 0.0677 0.1447 0.09 0.3778 0.2962 0.326
5 exp 0.0011 0.8867 0.1238 0.0474 0.0892 0.051 0.4317 0.2605 0.3078
5 φ1 0.0011 0.8713 0.1599 0.0578 0.1058 0.0572 0.3486 0.3302 0.3212
5 φ10 0.0011 0.8919 0.2455 0.0851 0.1561 0.0918 0.4961 0.1348 0.3691

5 φ 0.0011 0.8947 0.1931 0.0664 0.1212 0.0708 0.4262 0.5738 0.0
5 + 0.0011 0.9175 0.2762 0.0906 0.191 0.1181 0.5092 0.4908 0.0
5 log 0.0011 0.8898 0.1565 0.0574 0.1137 0.0681 0.5426 0.4574 0.0
5 exp 0.0011 0.9015 0.2338 0.0795 0.1621 0.0966 0.6821 0.3179 0.0
5 φ1 0.0011 0.8878 0.1305 0.0501 0.0949 0.0565 0.3459 0.6541 0.0
5 φ10 0.0011 0.9167 0.2418 0.0838 0.1617 0.0974 0.6619 0.3381 0.0

TABLE VI. RESULTS FOR MLSH WITH LABELS FROM IP-1-125 WITH SCORES FROM THE IP, OP AND OB CHANNELS VERSUS SCORES FROM THE IP
AND OP CHANNELS

a related business problem. In this invention, we propose a
scoring function that will identify a product’s self-promotion
and cross-promotion values more accurately over traditional
methods.

We define two product quotient functions: PQcross(i, j) and
PQ(i). The first function captures the effect of the purchase of
one unit of item i on the purchase of item j. The second
function encodes the effect of the purchase of one unit of
item i on the purchase of item i; this can be viewed as a
repeat purchase propensity of item i and is a special case of
the first function. These two functions are realizations of the
promotional values of items introduced earlier.

The definition of the similarity function introduced in
section IV involves a user x and item y, which share the
same feature space (see section V for a list of features). The
item vector is a binary vector, whereas the user vector is an
accumulation over the items consumed by the user. In what
follows, we replace the user vector x by an item vector i
to introduce functions which compare two products via the
similarity function. This should be viewed as a user who
consumes one unit of item i.

We define two product quotient functions: PQcross(i, j) and
PQ(i). The first function captures the effect of the purchase of
one unit of item i on the purchase of item j

PQcross(i, j) = simcs(i, j, A,C) (22)

where A and C are learned from the data. As the first
parameter in the similarity function refers to a user profile,
PQcross(i, j) can be viewed as how the purchase of one unit of
item i influences the purchase of one unit of item j. As the
matrices A and C are learned from the data this relationship
is likely to be asymmetric in general.

The second function encodes the effect of the purchase of
one unit of item i on the purchase of item i; this can be viewed
as a repeat purchase propensity of item i. The function PQ is
a special case of the PQcross function, specifically

PQ(i) = PQcross(i, i) (23)

We define the value of the store S based on consumption
behavior to be the sum of item quotients, refer to it as the
retailer quotient and denote it by RQ, where the set S is the
colllection of item (I ) and user profiles U .
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p � λ AUC Recall Precision nDCG AVEP wIP wOP wOB

5 φ 0.0011 0.8377 0.0549 0.0175 0.038 0.0211 0.3634 -0.1778 0.4588
5 + 0.0011 0.8246 0.1359 0.0433 0.0859 0.0451 -0.1298 0.498 0.3722
5 log 0.0011 0.8142 0.1916 0.0625 0.128 0.0732 -0.4049 0.5042 0.0909
5 exp 0.0011 0.7432 0.0967 0.0365 0.0569 0.0272 -0.0042 0.2901 0.7057
5 φ1 0.0011 0.8622 0.2175 0.0758 0.1364 0.0793 0.3236 0.3878 0.2887
5 φ10 0.0011 0.8793 0.2054 0.0628 0.1427 0.0817 0.4894 0.3209 0.1898

5 φ 0.0011 0.8978 0.2063 0.0667 0.1361 0.0773 0.4662 0.5338 0.0
5 + 0.0011 0.8901 0.189 0.0642 0.1322 0.0777 0.5434 0.4566 0.0
5 log 0.0011 0.9187 0.2061 0.0759 0.143 0.0861 0.6021 0.3979 0.0
5 exp 0.0011 0.9008 0.2118 0.0703 0.1262 0.0678 0.6809 0.3191 0.0
5 φ1 0.0011 0.9081 0.2233 0.0747 0.1663 0.1075 0.4997 0.5003 0.0
5 φ10 0.0011 0.9216 0.3117 0.1067 0.2045 0.1295 0.6154 0.3846 0.0

TABLE VII. RESULTS FOR MLST WITH LABELS FROM IP-1-125 WITH SCORES FROM THE IP, OP AND OB CHANNELS VERSUS SCORES FROM THE IP
AND OP CHANNELS

p � λ AUC Recall Precision nDCG AVEP wIP wOP wOB

5 φ 0.0011 0.8918 0.1706 0.058 0.1052 0.0577 0.334 0.333 0.333
5 + 0.0011 0.8761 0.1158 0.0503 0.0793 0.043 0.334 0.333 0.333
5 log 0.0011 0.8682 0.1969 0.0728 0.1262 0.0761 0.334 0.333 0.333
5 exp 0.0011 0.8818 0.084 0.0318 0.0503 0.0245 0.334 0.333 0.333
5 φ1 0.0011 0.8914 0.1893 0.056 0.133 0.0782 0.334 0.333 0.333
5 φ10 0.0011 0.8912 0.239 0.084 0.1583 0.0941 0.334 0.333 0.333

5 φ 0.0011 0.9088 0.2233 0.0786 0.158 0.1041 0.5 0.5 0.0
5 + 0.0011 0.8952 0.193 0.0683 0.1376 0.0812 0.5 0.5 0.0
5 log 0.0011 0.9199 0.246 0.0849 0.1697 0.1031 0.5 0.5 0.0
5 exp 0.0011 0.9216 0.2913 0.0993 0.2135 0.1391 0.5 0.5 0.0
5 φ1 0.0011 0.9177 0.2199 0.0747 0.1604 0.1043 0.5 0.5 0.0
5 φ10 0.0011 0.9205 0.2783 0.0999 0.1951 0.1283 0.5 0.5 0.0

TABLE VIII. RESULTS FOR MLSI WITH LABELS FROM IP-1-125 WITH SCORES FROM THE IP, OP AND OB CHANNELS VERSUS SCORES FROM THE IP
AND OP CHANNELS

p � λ AUC Recall Precision nDCG AVEP

5 + 0.0011 0.9173 0.2591 0.092 0.1666 0.097
5 exp 0.0011 0.9106 0.2068 0.0733 0.131 0.0711
5 φ10 0.0011 0.9301 0.3113 0.1106 0.2206 0.1458

TABLE IX. RESULTS FOR MLSI WITH LABELS FROM THE RESPECTIVE CHANNELS AND THE 1-125 DAY PERIOD USING SCORES FROM THE IP AND OP
CHANNELS

RQ(S) =

∑
i∈I

PQcross(i, i)

#I
(24)

Note that since this score is normalized by the number
of products, it is insensitive to the size of the inventory;
this enables comparison between retailers. Lastly, we remark
that comparing our product scoring system against competing
systems could be pursued in the future.

A. Results

In this section we will provide evidence to support our
hypothesis that our scoring system which captures consump-
tion behavior is better than a system which uses cosine
similarity. For a fixed item i, let rankPQcross(i, j) denote the
rank of PQcross(i, j) j ranges over the list of all items. The
rank ranksimcs(i, j) has an analogous definition for cosine
similarity, where A = C is the identity matrix.

We first share results on the PQcross function. Let B be
the set of 50 most frequently bought items in our data set.
And for every pair of items i and j in B we computed the
values of PQcross(i, j). The number of times rankPQcross(i, j) is
better than ranksimcs(i, j) is 2312 out of 2500. This indicates
that frequently bought items promote each other according to
our product scoring system. Next we also examined items
which were rarely bought (long tail of the purchased items

distribution) and these items were 50 in number; let’s label
this set R. In this case, the number of times rankPQcross(i, j)
is better than ranksimcs(i, j) is 903 out of 2500. The ranks
for this set of items did not exhibit behavior demonstrated by
the items in set B. Figures 5, 6 plot how the most and least
frequently purchased items (mo and le) influence the top-50
(set B) and bottom-50 (set R) respectively. The vertex label in
these graphs specify PQcross(mo, j1) and PQcross(le, j2), where
j1 ∈ B and j2 ∈ R.

Next we look at the distribution of the rankPQ(i,i) function
for top-50 and bottom-50 frequently purchased items (Figures
3, 4). The histograms are right-skewed and left-skewed which
correlates with purchase frequency. Recall that traditional
cosine similarity will give the same score of 1 to all items
resulting inability to differentiate between the ranks. This
documents the superiority of our product quotient system.
Finally the retailer quotient of this company was calculated
to be 0.733.

Our scoring system captures the significance of the item
in terms of how a purchase of this item influences the value
of the store via promotional values. Furthermore, we define
the retailer’s value based on item values. To our knowledge,
no existing system scores the items in this way. This method
of learning similarities from the transaction history provides a
better measure of item scoring than standard cosine similarity
measure on transaction history. This is because in the latter,
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p � λ AUC Recall Precision nDCG AVEP

5 φ 0.0011 0.8312 0.22 0.0756 0.1504 0.0933
5 + 0.0011 0.8917 0.1724 0.0632 0.1114 0.0599
5 log 0.0011 0.8539 0.0492 0.0203 0.0284 0.0109
5 exp 0.0011 0.9021 0.2344 0.079 0.1639 0.1022
5 φ1 0.0011 0.884 0.2278 0.0759 0.1568 0.0995
5 φ10 0.0011 0.8841 0.119 0.0494 0.0921 0.0569

5 φ 0.0011 0.8575 0.1902 0.0645 0.1253 0.0698
5 + 0.0011 0.8321 0.1331 0.0418 0.0665 0.0268
5 log 0.0011 0.8418 0.1116 0.0422 0.0745 0.0397
5 φ1 0.0011 0.8442 0.2129 0.0713 0.1462 0.0942
5 φ10 0.0011 0.8375 0.2137 0.0716 0.1484 0.0936

5 φ 0.0011 0.8903 0.2421 0.0799 0.172 0.1139
5 + 0.0011 0.8825 0.1494 0.0555 0.0926 0.0484
5 log 0.0011 0.8493 0.1236 0.0457 0.0765 0.037
5 exp 0.0011 0.857 0.1788 0.0626 0.1158 0.0748
5 φ1 0.0011 0.9033 0.2454 0.0872 0.1784 0.1223
5 φ10 0.0011 0.8928 0.2636 0.0915 0.1796 0.1135

5 φ 0.0011 0.8771 0.199 0.07 0.1375 0.0932
5 + 0.0011 0.9012 0.1696 0.0614 0.0987 0.0488
5 log 0.0011 0.8883 0.2012 0.0588 0.1508 0.0953
5 exp 0.0011 0.8908 0.2031 0.0708 0.1291 0.0704
5 φ1 0.0011 0.9088 0.2272 0.0713 0.1578 0.0951
5 φ10 0.0011 0.8858 0.2134 0.0765 0.14 0.0916

TABLE X. RESULTS FOR ONE CHANNEL VERSUS RESULTS FOR MLSI, MLST, MLSH FOR THE IP AND OP CHANNELS WITH LABELS FROM IP-1-125

Fig. 3. Distribution of rankPQ of top-50 frequently purchased items
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Fig. 4. Distribution of rankPQ of bottom-50 frequently purchased items
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an item promotes itself the most, independent of the nature of
the data (in a cosine similarity based scoring model, item self-
promotion scores would be always be 1), whereas this might
not always be the case. In the context of cross-promotional
values, our method is flexible to accommodate asymmetry in
promotionality, that is, the purchase of item i driving the sales
of item j does not imply the reverse direction promotion. This
is in contrast to using standard cosine similarity for scoring
due to its symmetric nature. This illustrates that our method
provides a more accurate picture of the value of items.

B. Applications

Applications of the product quotient system include new
ways to evaluate retailer performance, design products in the

Fig. 5. A graph describing how the most frequently bought product influences
the top-50 frequently bought products
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Fig. 6. A graph describing how the least frequently bought product influences
the bottom-50 frequently bought products
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retail context. We elaborate on two of these applications.

The learned similarity measure can be used in designing a
product having maximum promotional values. This is achieved
by performing automated variable selection techniques via a
greedy solution. The algorithm would ensure that only one
feature is selected from binary features corresponding to a
class of features, for instance, exactly one brand is selected. A
special instance of this application is the following: suppose
the product features have been finalized but one feature,
price for instance, is yet to be fixed. The price range which
maximizes the item’s value can be computed by keeping all but
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price features fixed and iteratively selecting one price feature
at a time. This is related to the technique of conjoint analysis
which attempts to answers what features a new product should
have and how it should be priced.

Another application of our system is to identify a set of
products which collectively drives a larger set of products;
this is valuable information to the retailer. Consider the set
of products as vertices of a graph with a directed edge from
product i and j if the former drives the latter with weight
of the edge being equal to PQcross(i, j). Using the concept of
network flows, the set of promoting items can be determined.
(A dummy source and sink with infinite capacity edges might
need to be added.)

VII. CONCLUSION AND FUTURE WORK

In this paper we have introduced a recommendation system
using the pair-wise learning to rank approach, where rank
loss is minimized using surrogate loss functions. Our approach
of learning similarity functions gives significant performance
improvement over using standard cosine similarity particularly
when distinct user and item transformation matrices are learned
using a multi-channel marketing dataset.

As future work, it will be interesting to investigate the
performance of other similarity and distance measures [7] in
place of cosine similarity. A feature of our system is that it is
agnostic to the choice of target channel; this is another avenue
of exploration. Finally, the phenomenon of similarity scores
from fewer channels give better performance spells out the
need to couple automatic feature selection with our learning
algorithm in applications where there are many channels to
consider.

Our algorithm is designed to maximize AUC and it appears
that large AUC values are accompanied by large values for the
other metrics. Comments on this correlation will have to be
based on further analysis. AUC results tend to improve as p the
number of rows in the learned matrices increases. Given that
it is computationally expensive to evaluate the performance of
the system for various values of p, it would be worthwhile to
devise an optimization algorithm which determines a value of p
which maximizes AUC and computes the associated matrices.
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