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Abstract

Motivation: The ability to predict pathways for biosynthesis of metabolites is very important in

metabolic engineering. It is possible to mine the repertoire of biochemical transformations from

reaction databases, and apply the knowledge to predict reactions to synthesize new molecules.

However, this usually involves a careful understanding of the mechanism and the knowledge of

the exact bonds being created and broken. There is a need for a method to rapidly predict reactions

for synthesizing new molecules, which relies only on the structures of the molecules, without

demanding additional information such as thermodynamics or hand-curated reactant mapping,

which are often hard to obtain accurately.

Results: We here describe a robust method based on subgraph mining, to predict a series of bio-

chemical transformations, which can convert between two (even previously unseen) molecules.

We first describe a reliable method based on subgraph edit distance to map reactants and prod-

ucts, using only their chemical structures. Having mapped reactants and products, we identify the

reaction centre and its neighbourhood, the reaction signature, and store this in a reaction rule net-

work. This novel representation enables us to rapidly predict pathways, even between previously

unseen molecules. We demonstrate this ability by predicting pathways to molecules not present in

the KEGG database. We also propose a heuristic that predominantly recovers natural biosynthetic

pathways from amongst hundreds of possible alternatives, through a directed search of the reac-

tion rule network, enabling us to provide a reliable ranking of the different pathways. Our approach

scales well, even to databases with >100 000 reactions.

Availability and implementation: A Java-based implementation of our algorithms is available at

https://github.com/RamanLab/ReactionMiner.

Contact: sayanranu@cse.iitd.ac.in or kraman@iitm.ac.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metabolic networks have been curated for hundreds of organisms in

popular databases such as the Kyoto Encyclopedia of Genes and

Genomes (KEGG; Kanehisa et al., 2016), MetaCyc (Caspi et al.,

2012) and MetaNetX (Ganter et al., 2013). These curated biochem-

ical reaction databases represent the repertoire of biochemical con-

versions that known enzymes can catalyze. Enzymes, while being

remarkably specific, also demonstrate the ability to convert a family

of related substrates (e.g. alcohols), to a family of related products
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(e.g. aldehydes). An important challenge in metabolic engineering is

the biosynthesis of novel molecules through heterologous expression

of enzymes from other organisms. The ability to perform this retro-

synthesis of novel molecules hinges on our ability to understand and

generalize the abilities of the enzymes, in terms of the chemical reac-

tions that they can catalyze and the substrates that they can act on.

Further, a deeper understanding of the biochemical transform-

ations happening in metabolic networks can shed light on various

fundamental questions in biology. For example, are there alternate

ways to synthesize common central metabolites such as pyruvate?

Why do cells prefer a particular pathway for the conversion of a me-

tabolite such as glucose, to say, pyruvate (glycolysis)? There are also

many knowledge gaps in our understanding of microbial metabol-

ism; for example, there are a number of compounds known to be

present in microbes, but the exact sequence of reactions and inter-

mediates involved in their biosynthesis remain unknown. It is pos-

sible to bridge these knowledge gaps through a careful analysis of

the metabolic networks, as we describe herein.

Since the seminal work of Corey and Wipke (1969), a number of

algorithms have been developed to analyse (bio)chemical reaction

networks, to predict pathways and novel routes for metabolite syn-

thesis (Carbonell et al., 2011, 2012, 2014a,b; Chen and Baldi, 2009;

Hadadi et al., 2016; Hatzimanikatis et al., 2005; Kayala and Baldi,

2012; Latendresse et al., 2014; Mithani et al., 2009; Moriya et al.,

2010; Rahman et al., 2009, 2014; Sivakumar et al., 2016). For re-

views, see (Hadadi and Hatzimanikatis, 2015; Medema et al.,

2012). Despite the availability of a wide array of reaction prediction

methods, nearly all of them rely on the existence of query molecules

in the reaction knowledge-base (‘known’ molecules in training

data). A notable exception is PathPred (Moriya et al., 2010), which

can make predictions on unseen molecules. ReactionPredictor (Chen

and Baldi, 2009; Kayala and Baldi, 2012) can also predict reactions

for unknown molecules, but it is limited to specific classes of organic

reactions, from which manually composed reaction transformation

rules have been derived.

In this work, we present a general and fully automated method

for predicting reactions between unknown (previously unseen) mol-

ecules. We do so by automatically learning biochemical transform-

ation rules involving substructures of molecules from the reaction

knowledge-base and searching for matching substructures in the un-

seen query molecule, both via subgraph mining techniques. The re-

sult is a scalable method that can be efficiently applied to predict

novel metabolic routes in thousands of organisms. Notably, com-

pared to previous methods, which use manually curated KEGG

RPAIR mappings (Moriya et al., 2010), or manually composed reac-

tion transformation rules (Kayala and Baldi, 2012), we use no more

information than a given metabolic reaction database and the chem-

ical structures of the participating molecules. We also demonstrate

two important applications of our method: first, we show how our

method can be used to identify/recover biochemically preferred path-

ways between metabolites. Second, we show how pathways to known

and novel/unseen compounds can be rapidly predicted. Our approach

is very efficient, completely automated, scalable and performs with a

higher degree of accuracy compared to state-of-the-art methods.

1.1 Related work
We now discuss how most previous approaches meet only a subset

of the challenges mentioned above. The earliest work

(Mavrovouniotis et al., 1990) focuses on using stoichiometric con-

straints to identify feasible pathways, where reactions are classified

as either being allowed, required or excluded from the pathways.

Rosselló and Valiente (2004) proposed a chemical graph transform-

ation approach to study metabolic networks. Rahnuma (Mithani

et al., 2009) employs a hypergraph model to represent a network be-

tween molecules for the prediction and analysis of pathways. An

edge connecting two molecules denotes that it is possible to convert

one to the other. Metabolic Tinker (McClymont and Soyer, 2013) is

an open source web-server that uses the entire Rhea database to

rank possible paths, based on thermodynamics. All the above tech-

niques, however, fail to generalize for unknown query molecules.

PathPred (Moriya et al., 2010) uses a limited number of (Reactant,

Product) pairs to predict pathways for a small subset of molecules.

However, these pairs and their structural transformations are hand-

curated and consequently, the technique is limited to a small collec-

tion of reactions. In our technique, we automatically learn both the

pairing and the structural transformations.

EC-BLAST (Rahman et al., 2014) proposes an algorithm to

automatically search and compare enzyme reactions. Though their

approach characterizes reactions using patterns derived from atom–

atom mappings, they use additional chemical knowledge such as

bond energies and do not address our precise problem of predicting

chemical reactions. Furthermore, information on bond energies is

not readily available. Kotera and co-workers (Kotera et al., 2013)

developed a method to learn enzymatic reaction likeness from meta-

bolic reaction databases using chemical fingerprints. From

Metabolite to Metabolite (FMM; Chou et al., 2009) is a tool for pre-

dicting pathways based on the KEGG. Kotera et al. (2014) propose

a supervised approach to predict multistep reaction sequences using

step-specific classifiers. However, their model is limited to the reac-

tion filling framework that restricts intermediate compounds to the

training database, while we do not make any such assumption.

Further, their prediction model lacks interpretability and may not be

able to capture the chemically important characteristics of a reaction

since it uses descriptor-based feature vectors to represent compound

pairs. In a subsequent work, Yamanishi et al. (2015) propose a

graph alignment based algorithm for pathway reconstruction using

regioisomer-sensitive graph matching. In this algorithm, vertices of

two graphs are aligned and then based on the alignment, a feature

vector is constructed. These feature vectors are fed to a classifier to

learn a classification model. In contrast, in our technique, the entire

prediction is performed on the graph space, by identifying the reac-

tion signatures (subgraphs), whose presence drives a particular reac-

tion type. RouteSearch (Latendresse et al., 2014) is a recent method

to predict pathways using the MetaCyc database. This technique

uses atom–atom mappings to search a metabolic network obtained

from MetaCyc (Caspi et al., 2012). Another very recent tool is

Metabolic Route Explorer (MRE; Kuwahara et al., 2016), which

can rapidly predict pathways in several organisms and rank the

pathways via a nice web interface. However, none of FMM,

RouteSearch or MRE can predict on unseen molecules.

2 Methods

Figure 1 presents the pipeline of our reaction prediction algorithm.

We represent each molecule as a graph, where atoms correspond to

vertices and bonds correspond to edges. Given a database of meta-

bolic reactions, we use an effective mapping method based on sub-

graph edit distance (He and Singh, 2006) to accurately map

transformed metabolites in a reaction. Through graph mining, we

then identify the specific subgraph within a graph (molecule) that is

critical for a reaction to occur. We call these subgraphs the reaction

signatures. For example, consider an alcohol to aldehyde conversion
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(see Fig. 2a), where RCH2OH is converted to RCHO, by the enzyme

alcohol dehydrogenase. We consider the subgraph corresponding to

CH2OH as the reaction signature, since the rest of the molecule re-

mains unaffected. We then analyse the reaction signatures and char-

acterize the changes they undergo during a reaction and summarize

them as reaction rules. Connecting back to our example, the reac-

tion rule in this case is CH2OH changing to CHO. All reaction rules

that are learned from the database are next consolidated in the form

of a reaction rule network (RRN). In the RRN, each node is a reac-

tion rule and two rules are connected by an edge if they can poten-

tially form a reaction pathway. This completes the offline phase. In

the online phase, given a query to find a pathway from molecule A

to B, we analyse the structures of both A and B based on the reac-

tion signatures they contain. From this analysis, A is mapped to a set

of source nodes, and B is mapped to a set of destination nodes, in

the RRN. Consequently, the prediction problem reduces to finding

(optimal) paths between the source and destination nodes in the

RRN.

2.1 Problem formulation
In this section, we formulate our prediction problem and define

the concepts and notations central to our work. We repre-

sent each molecule as an undirected graph. A graph g(V, E) is com-

posed of a set of vertices V ¼ fv1; . . . ; vng and a set of edges

E ¼ fe ¼ vi; vj

� �
j vi; vj 2 Vg. Each vertex and edge have labels

denoted l(v) and l(e) respectively. The size of a graph is jEj. Figure 2(b)

shows the graph representation of a molecule. Atoms correspond to

vertices, bonds correspond to edges and bond orders correspond to

edge labels.

The input to our problem is a dataset of chemical reactions, R.

Specifically, we use the KEGG database, as detailed in

Supplementary Methods Section 1.5. A reaction R contains

two sets of graphs (or molecules): the first set contains the reactants

and the second set contains the products synthesized. We use RS Rð Þ
to denote the reactant set in R and PS Rð Þ to denote the

products. A pathway P(A, B) from a molecule A to B is a chain of

reactions R1; . . . ;Rn such that A 2 RS R1ð Þ; B 2 PS Rnð Þ, and

PS Rið Þ \ RS Riþ1ð Þ 6¼ / 81 � i � n� 1, i.e. there is at least one

metabolite shared between the product set of one reaction and the

reactant set of the next.

We now define the pathway prediction problem as follows:

Given a training database of reactions (and the structures of the con-

stituent molecules), learn a prediction modelM.M should support

the prediction query Q S;Tð Þ, where S is a (set of) source molecule(s)

and T is the target molecule. Given this query,M should produce a

pathway P(A, T) where A 2 S.

An important aspect of our formulation is that we do not make

any assumption of the source or the target molecules being present

in the reaction database. The only information we use to learn the

prediction model are the structures of the molecules, which is easily

available.

2.2 Mining reaction patterns
Our goal in this section is two-fold. First, we identify the reaction

patterns existing in the training database. Second, for any given mol-

ecule in the reactant set, we should be able to predict the patterns

that are applicable on the reactant. To understand what a pattern is

in our context, let us revisit Figure 2(a). We claim that both reac-

tions follow the same pattern because: (i) in both the alcohol mol-

ecules, the exact same subgraph (highlighted in red) is affected,

while the remaining portions remain unaltered, (ii) the affected sub-

graphs undergo an identical change and (iii) the oxidizing agent

undergoes an identical change to form a water molecule.

In other words, if the same structural change happens in one or

more reactions, then that is a pattern. To quantify the structural

change, we first need to construct a mapping between the graphs in

the reactant set to those in the product set. More specifically, the al-

cohol molecules should be mapped to the aldehyde molecules and

the oxidizing agent should be mapped to water. The comparison in

the structure of the mapped molecules allows us to quantify the

change. We call this operation reactant–product mapping (RPM)

and use the notation RPM(A, B) to denote that a reactant A has

been mapped to a product B of the reaction. Clearly, a wrong
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Fig. 1. Pipeline of the reaction prediction algorithm. The figure outlines both

the offline and online phases of the algorithm. The offline phase involves

graph mining of the reaction database to identify reaction signatures, from

which reaction rules are subsequently identified and embedded in a reaction

rule network (RRN). In the online phase, we search the RRN and predict suit-

able pathways, on the arrival of a query A! B
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Fig. 2. A simple illustration to motivate our approach. (a) Conversion of ethanol and propanol (alcohols) to ethanal and propanal (aldehydes) respectively.

Vertices without explicit labels represent Carbon atoms. Notice that although the reactions involve different molecules, the changes (highlighted in boxes) are

identical. (b) Representing D-Lactic acid as a graph. Note that double bonds are indicated by a changed edge label, as are wedges and dashes that represent bond

stereochemistry
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mapping (such as mapping alcohol to water) would produce spuri-

ous results. RPM is essentially an automated approach to map react-

ants and products, similar to the RPAIR concept used in KEGG

(Oh et al., 2007), but we compute it only using the molecule struc-

tures and without resorting to any manual curation.

Clearly, computing the structural change is possible only after

the RPM is constructed. To detect RPMs, we use subgraph edit dis-

tance, as we discuss in Supplementary Methods Section 1.3. We

demonstrate the robustness of our RPM by comparing our matched

reactant–product pairs with the manually curated KEGG RPAIR

database (discussed in Supplementary Methods Section 2.2). To

quantify the changes due to the reaction, we first identify the reac-

tion centres. Subsequently, we identify the reaction signatures, or

the motifs we consider necessary for a reaction to occur (see

Supplementary Methods Section 2.2.1).

2.2.1 Reaction centres

The reaction centre for an RPM pair (A, B) is the set of vertices in

the product B to which new edges are added, or existing edges

removed, during its transformation from A. The reaction centre can

easily be determined from the mapping / corresponding to

sed(A, B). Specifically, it is a vertex v in the product B, such that

l(v)¼ l(/(v)), but there exists an edge v; v0ð Þ, where l v0ð Þ 6¼ l / v0ð Þð Þ.
Recall, l(v) denotes the label of v. For instance, consider the reaction

in Figure 3(a), and particularly focus on the pair (C00049, C00152).

In this pair, the conversion involves a removal of the OH group and

addition of the NH2 group. Thus, we have one reaction centre,

which is the carbon atom attached to the bond involved with the

change. The reaction centre is explicitly shown in Figure 3(b).

Although it is more common to see one reaction centre in a pair,

multiple reaction centres are possible.

2.2.2 Reaction signature

The reaction centre only tells us the location of change. It does not

necessarily tell us the reason, or the conditions necessary, for the

change to occur. To predict pathways, we need to identify the condi-

tions required for a reaction to happen. We build our prediction

model based on the hypothesis that two molecules would undergo a

similar change in a reaction if they contain a common ‘key’ sub-

structure that drives the forming or breaking of chemical bonds.

Our hypothesis is motivated by the fact that many enzymes, such

as alcohol dehydrogenases that convert alcohols to aldehydes,

show a specificity towards the type of subgraph, i.e. sub-structure

present in the reactants (Kauzmann, 1959; Palmer, 2007). Since

the reaction centre is the location of the change, a straightforward

approach would be to assign the reaction centre as this ‘key’

subgraph. However, a single atom (or vertex) does not capture all

of the atom-level interactions that take place. For instance,

consider the reaction centre in L-Asparagine (C00152; see Fig. 3a),

which is a Carbon atom. Here, the Carbon is not only interacting

with the NH2 group that gets replaced with the OH group, but

also with the adjacent Oxygen and Carbon atoms. The strength

of the C¼O and C–C bonds, their charges, geometries etc. all play

a role in the breaking of the C–NH2 bond and its eventual

replacement with C–OH. To generalize, the direct neighbours of

the reaction centre influence the reaction. Based on this intuition,

we define a reaction signature, S(VS, ES) as the immediate (‘one-

hop’) neighbourhood of the reaction centre in the product of the

(A, B) pair.

The reaction signatures of the two reactant–product pairs in the

reaction in Figure 3(a) are shown in Figure 3(b). It is easy to see that

the reaction signature is a subgraph of the product. Note that when

there are multiple reaction centres, there are multiple reaction signa-

tures as well, where each signature represents the neighbourhood

around the corresponding reaction centre. In general, the reaction

centres identify the locations of change, and the reaction signatures

encode the potential driving factor behind the change. A formal de-

scription of how reaction signatures are computed and stored can be

found in Supplementary Methods (Section 1.4).

2.2.3 Detecting the change in a mapped reactant–product pair

Conceptually, in a pair of mapped reactant and product molecules

(A, B), we want to store D¼B – A, where D is the difference be-

tween the structures. Furthermore, given only B and D, we should

be able to re-construct A. As we will see later, the ability to recon-

struct the reactant A from just D and the product B lies at the

core our of our algorithm‘s ability to predict on unseen molecules.

The reaction signature can change through either the addition or

removal of subgraphs, as detailed in Supplementary Methods

Section 1.4.

To illustrate, Figure 3(c) shows the structural changes for three

different pairs. The first pair is from Figure 3(a). The other two pairs

correspond to the reactions in Figure 2(a). Notice that since both re-

actions in Figure 2(a) involve the conversion of alcohol to aldehyde,

their structural changes (along with the reaction centres and signa-

tures, which are not shown in Fig. 3c) are identical. The above illus-

tration not only showcases how we capture structural changes in a

reaction, but also demonstrates our precise ability to detect a com-

mon pattern among reactions. Armed with this technique, we next

formulate the idea of a reaction rule.
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L-Aspartate)
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Subgraph Added C − OH C = O C = O
Subgraph Removed C − NH2 H−C−OH H−C−OH
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Fig. 3. Illustration of reaction signature. (a) An example reaction, illustrating the conversion of the amino acid L-Asparagine (C00152) to L-Aspartate (C00049). The

other reactants/co-factors in this reaction include ATP (C00002), AMP (C00020), Diphosphate (C00013) and Ammonia (C00014). (b) The reaction centres and signa-

tures (colored circle) in the reaction in (a). (c) The structural changes in the reactant–product pairs, in terms of subgraphs added and removed (Color version of

this figure is available at Bioinformatics online.)
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2.3 Reaction rules
Given a database of reactions R, for each reaction R, we identify all

of its reactant–product pairs. From each pair (A, B), we extract and

store the following information: (i) the reaction signature, (ii) the re-

action centres, (iii) the subgraphs added and removed and (iv) all

reactants in R except A. These reactants are the co-factors or helper

reactants that facilitate the reaction. For example, the oxidizing

agent would be stored as the helper reactant for (ethanol, ethanal)

and (propanol, propanal) pairs in Figure 2(a). For the (C00152,

C00049) pair in the reaction in Figure 3(a), both C00020 and

C00013 would be stored.

We denote the above information, which is extracted from each

(A, B) pair, as L(A, B), the reaction rule. Note that we do not store the

pair (A, B) itself; we only store the structural change and its associated

information. L(A, B)¼L(C, D) if all of the four items listed above are

identical. For example, L ethanol; ethanalð Þ ¼ L propanol;propanalð Þ.
Given a support threshold h, L(A, B) is called a reaction rule if

L(A, B) occurs more than h times in the database. Essentially, a

reaction rule encodes the conditions required for a reaction to pro-

duce a predictable output. The support threshold controls the min-

imum number of times a pattern of structural change must be seen

to be considered a reaction rule. The role of the support threshold

is identical to its purpose in the well known problem of associ-

ation rule mining. Since novel pathway identification between rare

molecules is of critical importance, we err on the side of explor-

ation, and set the default h ¼1, which means any structural

change is a pattern, even if it does not repeat across multiple

reactions.

2.4 Pathway prediction
We now discuss how the reaction rules described above can be

employed to predict synthesis of a target product. A reaction

rule serves two purposes: firstly, given any target product molecule,

detect whether the rule is applicable on the molecule. If the rule is

applicable, we must predict the reactants required to synthesize the

given product. In other words, the reaction rule is used to simulate

the reaction in the reverse direction by predicting the reactant given

the target product molecule. We introduce two graph operators:

graph addition and subtraction, which enable the above. An ex-

ample of the operations is shown in Supplementary Figure S1(a).

Supplementary Algorithm S1 presents the pseudocode of apply-

ing a reaction rule. Let B be a target product and L be the reaction

rule that we want to apply on B if chemically feasible, i.e. if the rule

is applicable, based on the presence of appropriate subgraphs.

Recall our hypothesis that the presence of the reaction signature is

the cause of the reaction. Second, due to the reaction, the ‘Subgraph

Added’ of L gets attached at the reaction centre c. Thus, we first

merge the reaction signature with the ‘Subgraph Added’ to create a

single merged graph m. If m is a subgraph of B, then L is applicable

on B. If the check passes, we proceed to the next step of formulating

the reactants that can synthesize B. Since the reaction centre is pre-

sent both in the signature and the ‘Subgraph Added’, m is guaran-

teed to be connected.

First, we construct the reactant pair of B using L. We remove the

‘Subgraph Added’ from B (line 3) and then merge the ‘Subgraph

Removed’ component with B to create the reactant pair A (line 4).

Finally, the helper reactants in L are fetched and their reaction with

A is predicted to synthesize B (line 5). Note that neither B nor A is

required to be present in the training database—only a matching

subgraph need be present. An example is illustrated in the

Supplementary Figure S1.

2.5 Reaction rule network
While we have described above, the procedure to predict a reaction

that could synthesize a target molecule (also see Supplementary

Algorithm S1), our goal is to predict pathways—essentially a chain

of reactions. Furthermore, between a source and a target molecule,

there could be hundreds of pathways. How do we identify and rank

only the top-k best paths? To overcome these challenges, we propose

the idea of an RRN.

Each node in the RRN corresponds to a reaction rule, and

we want to ensure the following property: if there exists a pathway

P ¼ fR1; . . . ;Rng from molecule A to B, such that reaction Ri hap-

pens through rule Li, then, there should be a path from Ln to L1 in

the RRN. Towards that goal, we notice that rules L1 and L2 can be

applied consecutively if the product of L1 is a reactant in L2. In such

a case, we should have a directed edge from L2 to L1. However, nei-

ther the product nor the reactant may be present in the database.

We need to capture this dependency between rules L1 and L2 only

from the structural change information that we store.

To capture all of these properties, we use two graph operators—

graph addition and subtraction (illustrated in Supplementary

Fig. S1a) to formally define the RRN as follows:

Let L be the set of all rules mined from our training database.

The RRN N(VN, EN) is a directed graph where VN ¼ L. Let g2 ¼ L2

:signature� L2:subgraphAdded þ L2:subgraphRemoved and g1

¼ L1:signatureþL1:subgraphAdded and e¼ L2;L1ð Þ2 EN if g1 � g2.

We define an edge from L2 to L1 if rule L1 is applicable on a react-

ant obtained by applying L2 on any compound (Note that a reaction

rule is applied in the reverse direction). g2 (as defined above) is the

subgraph that must be present on any reactant obtained by applying

L2 on a compound. On the other hand, g1 is the subgraph that must

be present on any product on which L1 is applicable (follows from

Supplementary Algorithm S1). Thus, if g1 is a (subgraph isomorphic)

subgraph of g2, then rule L1 can be applied on the reactant obtained

by applying L2 on any compound. In other words, if we visualize the

process in terms of reactions, the product of L1 can feed in as a

reactant to L2. To illustrate the RRN, consider a training database

where in addition to the two reactions in Figure 2(a), we also have

the oxidation of ethanal to ethanoic acid shown in Supplementary

Figure S1(c). Furthermore, we consider every unique structural

change as a pattern. Thus, there are two reaction rules; rule L1 cor-

responding to the conversion of alcohol to aldehyde, and rule L2

corresponding to the conversion of ethanal to ethanoic acid. The re-

action signature, subgraph added and subgraph removed for L2 is

also shown in Supplementary Figure S1(c). The resultant g2 and g1,

as shown in Supplementary Figure S1(d), are isomorphic, and conse-

quently, there is an edge from L2 to L1 in the resultant RRN.

The formalization of the RRN completes the offline model build-

ing component. Next, we discuss the online query S;Tð Þ, where the

goal is to find a pathway from A to T where A 2 S is one of the

source molecules.

2.6 Answering queries on the RRN
To illustrate our query answering strategy, we continue with the

RRN outlined above. Suppose the query is to find a pathway from

hexanol to hexanoic acid (Supplementary Fig. S1e). Note that nei-

ther of the query molecules are in the reaction database. We initiate

by searching for a rule that is applicable on the target molecule, hex-

anoic acid. In our two-node network, rule L2 is applicable (line 1 in

Supplementary Algorithm S1). On applying L2 on hexanoic acid,

hexanal is generated as the reactant pair. Since hexanal is not the

source molecule, we continue searching by applying the adjacent
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rule L1. Since L1 is connected from L2, we are guaranteed that L1 is

applicable on the reactant produced by L2, which is hexanal. On

applying L1 on hexanal, hexanol is generated as the reactant pair,

which completes the query since it is the source molecule. The result-

ant pathway is therefore hexanol�!L1 hexanal�!L2 hexanoic acid.

To generalize the above strategy, we first identify nodes (or

rules) that are applicable on the target molecule. From each of these

rules, a reactant is generated. If the reactant is one of the source mol-

ecules then we stop. Otherwise, we continue exploring each possible

path using breadth-first search (BFS) either till all paths are ex-

hausted or a source molecule is reached. Exploration using BFS

guarantees that the first pathway found is the shortest, in terms of

length. The exploration algorithm can easily be generalized to find

the k shortest paths as well. While BFS is simple, it is often not scal-

able in a large RRN due to the large number of paths that exists.

Furthermore, the BFS strategy does not use the knowledge of the

source molecule to optimize the searching process. To overcome

these weaknesses, we explore an alternative algorithm, based on

best-first search (Russell and Norvig, 2003).

2.6.1 Heuristic Hd: minimizing structural changes in every step

We hypothesize that nature avoids reactions that cause drastic alter-

ations to the structure of the reactant. This can also be appreciated

in terms of the enzymes—enzymes are highly specialized and

perform an incremental structural change to a substrate, rather

than wholesale structural changes. We model this effect through a

distance function that minimizes the total structural change in a

pathway, in addition to minimizing the distance to a source mol-

ecule A. Specifically, the optimization function at a specific pathway

P ¼ fX1; . . . ;Xng of n molecules (n – 1 reactions) minimizes the

function below:

Hd P; Sð Þ ¼
Xn�1

i¼1

ged Xi;Xiþ1ð Þ þmin
8A2S
fged Xn;Að Þg (1)

where ged g; g0ð Þ is the edit distance between graphs g and g0 (Zeng

et al., 2009). Edit distance between two graphs is defined analo-

gously to subgraph edit distance. Specifically, it is the minimum

number of edits required to convert g to g0. The primary difference

with sed g; g0ð Þ is that g is converted to g0 instead of a subgraph of g0.

Consequently, ged g; g0ð Þ is symmetric. Based on Hd P; Sð Þ, we opti-

mize search paths using best-first search, as listed in Supplementary

Algorithm S2.

3 Results

In this section, we establish that our pathway predictions are accur-

ate, and that the proposed technique is scalable to large reaction

databases. Ours is the first technique that is fully automated, can an-

swer queries on unseen molecules, and requires no information

other than the structure of the molecules. Due to this simplicity of

our technique, we are the first to scale to a database as large as

150 000 reactions.

Our major results are three-fold. First, we query on those source

and target molecules present in the training database. The presence

of query molecules in the training set is enforced only to allow us to

compare the performance with the state-of-the-art pathway predic-

tion techniques such as RouteSearch (Latendresse et al., 2014) and

MRE (Kuwahara et al., 2016). We demonstrate how our heuristic

Hd picks up natural biosynthetic pathways very frequently, much

more than other state-of-the-art methods. We argue that our heuris-

tic is therefore a robust method to rank pathways based on

biological plausibility. Second, we remove the constraint of requir-

ing the source molecules in the training database and show that we

predict viable retrosynthetic pathways for known and new mol-

ecules. Finally, we show that our results are accurate, by means of

cross-validation, and that our algorithm can scale well for very large

reaction databases.

3.1 Hd consistently picks up natural pathways with high

probability
In any pathway prediction algorithm, all predicted pathways are

ranked according to some score, and finally the top-k highest scor-

ing paths are studied further for feasibility. Ranking the predicted

pathways is very important since there are often hundreds of paths

between two molecules, and a high rank should signify high bio-

chemical plausibility. As discussed earlier, we use Equation (1) as

the ranking function in our algorithm. To benchmark, we choose 20

pathways involved in the biosynthesis of amino acids and important

precursors in central carbon metabolism, similar to those used in

Carbonell et al. (2011) (see Supplementary Table S1). For the se-

lected pathways, we predict by querying using their source and tar-

get molecules and extract the top 10 predicted paths. The training

database for this experiment corresponds to the reaction set of

Escherichia coli. Table 1 presents the rank of the actual pathway by

each of the techniques. As clearly evident, the actual pathway con-

sistently ranks among the top 10 in our algorithm, while being

mostly absent in RouteSearch. MRE is able to predict only 10 of the

20 pathways. Although MRE occasionally ranks the correct result

higher than our method, it clearly lags behind our method in the

overall head-to-head comparison (4–14 with 2 ties). These results

point towards the superior ability of our technique to identify path-

ways reliably, and also rank the biologically favoured pathways

much higher. We have prioritized our comparisons against the re-

cent methods, MRE and RouteSearch; other methods that focus on

retrosynthesis, such as FMM and BNICE (Hadadi et al., 2016) can-

not be restricted to a single organism, while RetroPath and

ReactPRED do not predict paths between pairs of compounds.

3.2 Retrosynthetic predictions compare favourably with

other methods
In addition to the pathways we outlined above, we here show that

we perform comparably or better than MRE, in nearly all retrosyn-

thesis examples discussed in Kuwahara et al. (2016). We predict ret-

rosynthesis pathways for commercially important metabolites, such

as itaconate, naringenin, 1,3-propanediol, xylitol, etc. We find that

in a majority of cases, we are able to recover known pathways or

predict shorter biologically plausible pathways for retrosynthesis.

We summarize our retrosynthesis predictions in Supplementary

Table S2, alongside comparisons with MRE/FMM. We here note

that there are many more methods, such as Pathway Hunter Tool

(Rahman et al., 2005), Metabolic Tinker (McClymont and Soyer,

2013), RetroPath (Carbonell et al., 2014a), ReactPRED (Sivakumar

et al., 2016) and BNICE (Hadadi et al., 2016; Hatzimanikatis et al.,

2005). We have prioritized our comparisons against MRE, the most

recent method and refrained from repeating the observations of

Kuwahara et al. on the performance of other techniques. It is also

important to note that the main strength of our method is its ability

to predict pathways between a pair of source–target metabolites and

rank the putative pathways based on biological plausibility

(Heuristic Hd), which aligns well with methods such as MRE/FMM.

On the other hand, the key strength of methods such as RetroPath/
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ReactPRED is to predict and rank multiple pathways for the synthe-

sis of a metabolite, without a fixed ‘source’ metabolite.

For itaconate, an important value-added precursor from biomass

(Werpy and Petersen, 2004) we recovered the same path as predicted

by FMM. For production of naringenin, an important plant second-

ary metabolite and resveratrol, we find the same pathway identified

by MRE and FMM. For the production of xylitol, our top-ranked

pathway is shorter than that proposed by MRE, and agrees with

FMM. For artemisinic acid, an important anti-malarial drug,

synthesized in metabolically engineered S. cerevisiae (Ro et al.,

2006), we were able to predict the same path as MRE, from HMG-

CoA, although this differs from Ro et al. (2006). For paths from

acetyl-CoA to artemisinic acid, and chorismate to L-Tryptophan, the

top ranked paths from our algorithm are not very relevant, perhaps

due to the occurrence of very high-degree metabolites, such as

acetyl-CoA and pyruvate.

We also predicted pathways to three volatile organic compounds

in Mycobacterium tuberculosis that are not present in the KEGG

database. These pathways are hitherto unknown, but we have previ-

ously predicted the synthesis routes on the basis of enzyme biochemis-

try and sequence analyses (Bhatter et al., 2017). The exact pathways

predicted previously were ranked highest by our algorithm, for methyl

nicotinate and methyl p-anisate. For methyl phenylacetate, the correct

path was ranked third, superseded by two other pathways involving

metabolites not found in M. tuberculosis. These results highlight the

ability of our method to predict biologically plausible pathways to

even synthesize previously unseen molecules. Other methods such as

ATLAS, RetroPath, FMM and MRE do not have the target molecules

in their database and are therefore unable to predict paths.

Furthermore, we also examined some of the pathways evolved

by organisms to degrade anthropogenic chemicals such as penta-

chlorophenol (Cai and Xun, 2002; Copley, 2009). We find that we

are able to generate the identical pathway between

pentachlorophenol (C02575) and Maleylacetate (C02222), as indi-

cated in Supplementary Table S2. It is interesting to note that this

predicted pathway is one of several possible pathways, given that we

can apply many reaction rules to every intermediate. We also find

that MRE and FMM are unable to find any pathways between these

compounds, illustrating the importance of our ability to generalize

reaction rules, as well as handle novel molecules. MRE and our ap-

proach both correctly predict another pathway where atrazine

(C06551) is converted to urea-1-carboxylate (C01010). Together,

these results illustrate the ability of our approach to not only predict

retrosynthetic pathways, but also possible pathways that organisms

may use to metabolize xenobiotics. Importantly, our heuristic of

minimizing the metabolic transformations in a reaction enables us

to recover the very pathway these organisms have evolved to break-

down xenobiotics.

3.3 Cross-validation illustrates the high accuracy of our

pathway predictions
Given that the size of most metabolic databases is only of the order

of 10 000 reactions, we synthetically expanded the KEGG database

to >150 000 reactions as detailed in the Supplementary Methods

Section 1.6. First, we evaluate through 5-fold cross-validation.

Specifically, we split the KEGG Dataset into five parts, learn the

training model on four parts and predict on the fifth part. This pro-

cess is repeated to cover each part as the test set. For our prediction

query, we pick arbitrary pathways from the test set and check if the

exact pathways are predicted. We always ensure that the source and

the target molecules are not part of the training set. Figure 4 presents

the prediction accuracy against the training dataset size. To under-

stand the results better, we segregate them into pathways of length

1, 2 and �3. The trends are similar across all lengths and the results

saturate at around�35 000 reactions in the training dataset. As

Table 1. Pathway Prediction comparison of our algorithm (specifically, using the heuristic Hd) versus RouteSearch and MRE

ID Source Target Rank

Hd RouteSearch MREa

1 a-D-Glucose (C00267) D-Glyceraldehyde (C00118) 1 — —

2 D-Glyceraldehyde (C00118) Pyruvate (C00022) 2 — 13

3 5-Phospho-a-D-ribose (C00119) L-Histidine (C00135) 7 — —

4 Phosphoribulosyl-formimino-AICAR-phosphate (C04916) L-Histidine (C00135) 1 — —

5 D-Galacturonate (C00333) Pyruvate (C00022) 2 — 1

6 D-Erythrose (C00279) Pyridoxal phosphate (C00018) 6 — 119b

7 L-Threonine (C00188) L-Isoleucine (C00407) 1 — 1

8 GTP (C00044) 7,8-dihydropteridine (C04874) 4 — No path

9 7,8-Dihydroneopterin 3’-triphosphate (C04895) Dihydrofolate (C00415) 3 — 2

10 L-Aspartate (C00049) 2,3,4,5-Tetrahydrodipicolinate (C03972) 2 — —

11 L-Aspartate (C00049) L-Threonine (C00188) 3 — —

12 Oxaloacetate (C00036) L-Glutamate (C00025) 3 — —

13 b-D-Glucose (C01172) D-Glyceraldehyde (C00118) 6 — 1

14 2-Oxobutanoate (C00109) L-Isoleucine (C00407) 1 — 1

15 Chorismate (C00251) L-Tryptophan (C00078) — 1 1

16 Shikimate (C00493) L-Tyrosine (C00082) 1 1 38

17 L-Glutamate (C00025) L-Ornithine (C00077) 8 1 —

18 Phosphoenolpyruvate (C00074) L-Aspartate (C00049) 3 — —

19 Phosphoenolpyruvate (C00074) L-Asparagine (C00152) 3 — —

20 L-Glutamate (C00025) L-Proline (C00148) 3 — —

Note: The source and target molecules are indicated along with their KEGG CIDs. Bold-faced rank displays the winning algorithm for each row. The details of

the 20 pathways can be found in Supplementary Table S1.
a— in this column indicates the pathway is not found, in the top 200.
bSkips a step.
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expected, the accuracy is better for single length pathways since the

search space is smaller. Theoretically, the search space increases ex-

ponentially by a factor of d with each hop, where d is the average

degree of the RRN. For all three pathway lengths, the accuracy is

higher than 80% at�35 000 training reactions and beyond. We also

studied the scalability of our approach. Our results are detailed in

Supplementary Results Section 2.2.

4 Discussion

Is it possible to synthesize molecule B from molecule A? Are there

possible alternative routes to synthesize a molecule, other than the

one followed by cells of living organisms? Why do organisms in na-

ture choose a particular pathway to synthesize a metabolite, say

pyruvate, from glucose? In this paper, we have developed a pathway

prediction technique that can answer these questions. The proposed

system is the first fully automated technique that can operate at the

level of hundreds of thousands of reactions and answer queries in se-

conds. This level of sophistication is achieved through a graph min-

ing based approach, which automatically mines cause-and-effect

patterns of structural transformations from a training database of

chemical reactions. These patterns are employed to construct an ab-

stract representation of the reaction space in the form of a RRN.

This abstract representation lies at the core of our ability to make

rapid predictions, even on molecules that we have never seen before.

Many earlier studies have approached path finding in metabolic/

chemical reaction networks; however, they typically fall short in one

or more of the following: (i) they rely on the existence of query mol-

ecules in their database, or (ii) their pipeline involves the application

of hand-curated rules or reactant–product mapping information, or

(iii) they only work for specific classes of reactions. Using no more

information than the molecular structure of every molecule in the re-

action database, we have developed a powerful pipeline for predict-

ing pathways between any two metabolites.

Our key findings fall into three categories. First, we have an effi-

cient reactant–product mapping that is built on subgraph edit dis-

tance. It enables us to accurately track changes in chemical moieties

across the entire spectrum of biochemical reactions. Next, we identi-

fied reaction signatures, which are essentially subgraphs necessary

for the reactions to occur. Next, we embedded information about

the reaction centres in a given metabolic network onto another net-

work, the RRN. This novel representation enables us to predict a

series of reactions (or, a pathway) connecting two metabolites,

which may not even belong in the original reaction database.

We then proceeded to ask a more fundamental question about

the organization of metabolic networks: What is the key underlying

design principle of known metabolic pathways? For example, it is

well-known that standard biochemical pathways do not represent

shortest paths in the network—there are likely other constraints

such as energetics in play. Other studies (Noor et al., 2010) have

shown that central carbon metabolism is a minimal walk between

key precursor metabolites. We have here shown that across an as-

sortment of pathways, nature appears to minimize the incremental

biochemical change occurring, from the reactant to product, in every

step of the reaction. By employing a heuristic built on this logic, we

correctly recover a majority of pathways (see Supplementary Table

S1) from carbohydrate, amino acid and fatty acid metabolism. This

is a particularly novel aspect of our method, since it is convention-

ally believed that energy considerations predominate. Indeed, in cer-

tain cases, we observe that a different pathway is in use by nature,

clearly owing to energy considerations. For example, the path

from D-Mannose to L-Galactose in nature may be convoluted, owing

to energy considerations: D-Mannose ! GDP-mannose ! GDP-L-

galactose! b-L-Galactose! L-Galactose, even though a simple epi-

merization reaction may theoretically be possible. It is important to

note that our graph formalism, coupled with our heuristic has

enabled us make reliable predictions, even in the absence of import-

ant information such as manually curated reactant mapping or DG

values for different reactions. It is also interesting to note that we ac-

complished this in central carbon metabolism, where the structural

similarity of the molecules can potentially be more confounding,

compared to specialized pathways.

We have also predicted retrosynthetic pathways to commercially im-

portant molecules such as 1,3-propanediol, naringenin, itaconate and

artemisinic acid, and we compare favourably with previous methods

such as MRE, FMM and RetroPath. Importantly, we are able to add-

itionally predict pathways for compounds such as pentachlorophenol,

which MRE and FMM are unable to. Our method also enables us to

predict pathways for compounds not present in the training database,

such as methyl nicotinate, methyl phenylacetate and methyl p-anisate.

Finally, we also demonstrated that our approach is very scalable.

This is particularly important in the light of the fact that many stud-

ies have pointed out that our current understanding of microbial me-

tabolism is rather myopic—many more organisms from diverse

phyla need to be reconstructed, and even for many current metabolic

network reconstructions, major gaps in the reactome are present

(Monk et al., 2014). A comparison with the BRENDA enzyme data-

base also showed that only a third of the enzymatic activities in

BRENDA are covered by currently available metabolic networks

(Monk et al., 2014). Given the significant imminent expansion in

metabolic network databases, a scalable approach such as ours

bears special significance. By synthetically expanding the KEGG

database to about 150 000 reactions, we show that our approach is

still very fast, able to answer queries in a matter of seconds.

Our method is not without limitations. In choosing to keep the in-

put information as minimal as possible, to enable widespread applic-

ability, we have chosen to leave out thermodynamics from the

picture, often very essential for accurate predictions and ranking of

pathways. Nevertheless, we demonstrate that even without thermo-

dynamic information, we are able to recover a majority of natural

biosynthetic pathways. Further, it is often difficult to obtain accurate

measurements of changes in free energy, especially those which are

organism-specific. Also, like most other similar approaches to predict

reactions, the accuracy of our approach is limited by the accuracy of

the reaction database, KEGG, in this case. KEGG also contains no in-

formation about the reversibility of reactions, and essentially assumes

all reactions are reversible. However, it will be straightforward to in-

tegrate information from other databases such as MetaCyc; the scal-

ability of our algorithm will be particularly handy in such scenarios.
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ways of varying lengths
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In sum, we see three major contributions of our study. First, we

define a robust reaction–product mapping method using subgraph

edit distance, which is fast and reliable. This enables us to construct a

novel representation of a database of chemical reactions in terms of a

RRN that lends itself to rapid querying for pathways to synthesize

even molecules that are not present in the original reaction databases.

Next, we define a heuristic to perform searches on this network, by

minimizing the extent of transformation in every reaction. Searching

using this heuristic very effectively recovers known native pathways

across organisms, and enables a realistic ranking of predicted alter-

nate biosynthetic pathways. Finally, we demonstrate the ease with

which we can provide solutions to retrosynthesis queries. Notably,

our approach uses no information other than the chemical structure

of the molecules in every individual reaction, and yet gives very accur-

ate results and scales up to over a hundred thousand reactions.
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